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A. INTRODUCTION 

DESAP 2 is  a f i n i t e  element  program f o r  automated  design 

(synthesis)  of l i nea r -e l a s t i c   s t ruc tu res   unde r  s ta t ic  loads.  The 

design  object ive is  to   f ind   the   e lement  sizes (cross-sect ional  areas, 

p l a t e   t h i cknesses ,   e t c . )   t ha t  minimize the   t o t a l   s t ruc tu ra l   we igh t .  

The layout of  t h e - s t r u c t u r e  i s  not  changed during  the  design  procedure. 

The pr imary  constraints   used  in   the  synthesis   a lgori thm are 

upper limits on s t r e s s e s  and  lower  bounds on buckling  loads.  The 

stress limits may be  prescr ibed  in   the form o f   y i e l d   c r i t e r i a ,   l o c a l  

i n s t a b i l i t y   c r i t e r i a ,   o r   b o t h .  There a re  no r e s t r i c t i o n s  on the  

number of   load   condi t ions   tha t  may be  imposed on t h e   s t r u c t u r e   f o r  

the  s t ress-constrained  design.   Considerat ions  of  economy, however, 

limit the  number of  load  condi t ions  for   buckl ing-constrained  design 

t o  one. 

The program also  a l lows  the  use  of   secondary  constraints ,  which 

cons is t   o f  minimum allowable  element  sizes and s i ze   p ropor t ion  con- 

s t ra in ts   ( the   requi rement   tha t   the  sizes of  specified  elements  be 

equal ,   or   have a p resc r ibed   r a t io ) .  

The method of  design i s  very similar t o   t h a t  used f o r   s t r e s s  

and  displacement  constraints  in DESAP 1 [l] ; i n  fact ,  many p a r t s   o f  

DESAP 1 and DESAP 2 a r e   i d e n t i c a l .  The design  procedure i s  an 

i t e r a t i v e   p r o c e s s ,   e a c h   i t e r a t i o n   c o n s i s t i n g  of f o u r   p a r t s :  

1)  Prebuckling  analysis  of  the  current  design. 

2)  Redesign  with  respect t o   s t r e s s   c o n s t r a i n t s   b a s e d  on t h e  

resul ts   of   prebuckl ing  analysis .  
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3) Buckling  analysis of the   current   design  under   the  act ion  of  

t h e  internal f o r c e s   o b t a i n e d   i n   p a r t   1 ) .  

4) Redesign  with  respect t o  buckl ing;   the sizes of  elements  de- 

termined i n  p a r t  2) are used as the  minimum s i z e   c o n s t r a i n t s .  

The ent i re  computer  program is  bui l t   a round  the  SOLID SAP f i n i t e  

element  program  developed by E .   L .  Wilson[2]. I t  was necessary,   of 

course ,   to   car ry   ou t   ex tens ive   modi f ica t ions   o f   the   ex is t ing  SOLID  SAP 

subrou t ines   i n   o rde r   t o  accomodate the  special   requirements   of   the  

redesign  operations.   Apart  from the  modif icat ions,   several   major   addi-  

t i o n s   t o   t h e  program  were made. These  included  the  ent i re   buckl ing 

analysis  package, a l l  the  redesign  subrout ines ,  and the   sub rou t ines   fo r  

the  shear  panel  element.  

The c l a s s i c a l  stress r a t i o  method i s  employed in   the   redes ign   wi th  

respec t   to   s t ress   cons t ra in ts .   This   p rocedure  will d r i v e   t h e   f i n a l  

des ign   t o   t he   fu l ly   s t r e s sed   des ign ,  which  does not   necessar i ly   co inc ide  

with  the minimum weight   dis t r ibut ion  of   the  mater ia l .   Unfortunately,  

a t  t he   p re sen t   s t a t e -o f - the -a r t ,  more rigorous  design methods a r e  en- 

t i r e l y   i m p r a c t i c a l   f o r   s t r u c t u r e s   o f   r e a s o n a b l e   s i z e ,   s i n c e   t h e y  re- 

q u i r e   t h e   i n v e r s i o n   o f   t h e   s t r u c t u r a l   s t i f f n e s s   m a t r i x ,   o r   t h e   u s e  of 

numerical  search  techniques. 

For   the  constraints  " on the  general   buckling  loads,   the  redesign 

procedure  described  in [3 ,4]  i s  used. The redesign  formulas  are 

de r ived   d i r ec t ly  from the   op t imal i ty   c r i te r ion ;   consequent ly ,   the  

element  sizes are driven  towards  the minimum weight  design. 

The des ign   procedure   for   s t ress  as well as the  buckl ing  constraints  

is  based on the  assumption  that   the   loading is  independent  of  the 
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element  sizes  (dead  loading  of  prescribed  magnitude). Allowance has 

been made for   s ize-dependent   loads,   e .g . ,   thermal   s t resses  and g rav i ty  

loading,   but   these  loads must be  used  with  special   precautions.  

A s  po in ted   ou t   repea ted ly   in   ex is t ing   l i t e ra ture ,   ne i ther   the   fu l ly  

s t ressed  design,   nor   the  opt imal   weight   design  are   necessar i ly   unique,  

i . e . ,  they  have a loca l   r a the r   t han  a global   character .  I t  follows, 

t he re fo re ,   t ha t   t he   cho ice   o f   t he   i n i t i a l   des ign   p l ays  an important   role  

in   determining  the  design  to  which the  synthesis  algorithm  converges.  

Numerous examples seem t o   i n d i c a t e ,  however, that   the   weight   differences 

between the  various  converged  designs are s l igh t ,   a l though  there  may be 

l a rge   d i f f e rences   i n   t he   d i s t r ibu t ion  of t he   ma te r i a l .  

A very  important  feature  of  the program i s  the  organizat ion of 

the  element  subroutines  such  that   they can e a s i l y  be  adapted t o   t h e  

user 's   special   requirements   with  the  smallest   possible  programming 

changes.  In making th i s   p rov i s ion ,  w e  recognized  the  fact   that  it i s  

v i r tua l ly   imposs ib l e   t o   c r ea t e  an al l -purpose  synthesis  program. The 

reason is  tha t   s t ruc tu ra l   des ign   r equ i r e s  a much l a rge r  and more var ied  

volume of   input   information  than  analysis .   In   the  case  of  beam elements, 

f o r  example, the   c ross -sec t iona l  area, the  two moments of i n e r t i a  and 

the   to rs iona l   cons tan t   suf f ice   for   the   purposes  of analysis .   In  de- 

s i d  we must  add the  sect ion  moduli ,   local   buckl ing  information and the  

y i e l d   c r i t e r i o n ;   i n   a d d i t i o n  w e  must spec i fy  how a l l  these   p roper t ies  

vary  with  the  design  var iable .   Since  each  design  s i tuat ion may use 

elements of spec ia l   cons t ruc t ion  and shape, and d i f fe ren t   des ign  cri- 

ter ia ,  it is c l e a r l y   i m p r a c t i c a l   t o  make p rov i s ions   fo r  a l l  t he  

poss ib le  forms  of  design  data  in a s ing le  program. 
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Fina l ly ,  it must be  pointed  out   that  DESAP 2 ,  desp i t e  i t s  f l e x i -  

b i l i t y ,  can s t i l l  handle  only a l imi ted  amount of  design  information. 

Consequently,   the  results  of  the program are t o  be  taken as a pre- 

l iminary   des ign   in   the   sense   tha t  it g ives   the   des i red   p ropor t ions  of 

t he   s t ruc tu re ,   bu t   de t a i l i ng  must be s t i l l  car r ied   ou t  by the  designer  

through  conventional  design  practices.  
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B . THEORETICAL BACKGROUND 

B . l  Element  Properties 
th The  size of a typical (i ) element  is  denoted  by  Ai.  It  repre- - 

sents  the  cross-sectional  area  or  the  panel  thickness  for one and  two- 

dimensional  elements,  respectively. The  weight of the  element  can  be 

written  as 

Wi = p.A.  i = 1 ,  2, ..., I (B.  1 .1 )  
1 1 '  

where p is  the  unit  weight of the  element.  If  the  minimum  cost,  rather 

than  weight  is  the  design  objective,  then pi should  be  taken  as  the 

unit  cost. 

i - 

It is  seldom  desirable  to  have  each Ai as an independent 

design  variable.  Equal  size  constraints  can  be  imposed  by  introducing 

the  design  variables Dm, m = 1 ,  2 ,  . . . , M, where M < I, which  are in- 

dependently  variable,  and  expressing  each  element  size  in  the  form 

- 

(B.1.2) 

where vi is  called  the  design  variable  fraction of  the element.  Both 

n.  and  m  must  be  specified  for  each  element.  Equal  sizing of two 

elements  is  obtained,  for  example,  by  prescribing  the  same  m  for  each 

element  together  with  qi = 1 .  In  addition,  the  scheme  permits  propor- 

tional  sizing if the  same  m,  but  different  values  of ni are  used. 

1 

The  stiffness  matrix of each  element tis restricted  to  the  form 

[Ki] =[ki (1) ]Ai + [ki (2) ]Ai 1 (B.1.3) 
n. 
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where [Ki] is  the  element  stiffness  matrix, [ki (1) 3 and [k,!')] are  the 

unit  stiffness  matrices of the  element,  and n, is  the  inertia  exponent 

The  first  part of (B.1.3)  represents  the  action of direct  stresses, 

- 1 

whereas  the  second  part  is  due  to  bending o r  torsion.  The  value of ni 

depends  on  the  physical  nature of the  design  variable. For example, 

n = 1  for  thin-walled  beams  if  the  wall  thickness  only  is  being  varied 

If  all  dimensions of the  cross  section  are  scaled  uniformly, 
i 

then  n = 2. For  plates,  where  the  thickness  is  subject  to  design, 

we  have  n = 3 .  The  unit  stiffness  matrices of each  element  are  stored 

separately on an external  storage  device,  together  with  m, rl and  ni. 

i 

i 

i 
It  should  be  noted  that ni is  determined  by  the  relationship  between 

the  size and the  moment of the  inertia of the  element: 

n 
i Ii = jiAi , (B. 1.4) 

where j is  the  unit  moment of inertia. i "- 
The  vector of internal  forces  INi) of an element is recovered  from  the 

element  nodal  displacements {ui}  by  the formula 

INi) = [Si]{ui) + IT. 1 } . (B.1.5) 

If the  element  stiffness  matrix  is  given  by (B.1.3) , then  the  force 
recovery  matrix [Si] has  the  same  form: 

where [s!~)] and [s:*)] are  the  unit  force  recovery  matrices.  The 

force  vector {Ti) also  consists of two  parts: 
1 " 

(B. 1.6) 

(B.1.7) 
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{ti  (1) 1 being  the  unit - thermal  force  vector  and {ti(’) 1 represents  the  contri- 

bution of size-independent  loading; e.g., fixed-end  forces of beam  ele- 

ments  due to dead  loading.  Again, [si  (1) 1, [s:~)], {ti(” 1 and  {ti (01 } 

are  stored for  each  element. 

The  element  load  vector {pi) is  similarly  separated  into  two  components: 

(B. 1.8) 

where {qil) 1 is  the ”- unit  load  vector due  to  size-dependent  loading  (thermal 

and  gravity  loads),  and  {qi (O) represents  the  contribution of dead  loads; 

both  vectors  are  stored  for  each  element. 

The  form  of  equations (B. 1.7) and (B. 1.8)  allows  only for  a  uniform 

temperature  increase  within  an  element, i .e.  it  assumes  that  thermal 

expansion  causes  extension  without  bending.  This  excludes,  for  example, 

the  effects of thermal  gradients  through  the  thickness of plates,  for  which  we 
n  n 

would  require  additional  terms of  the  type {ti2) )Aii and {sf2) }Aii 

for {Ti) and {Qi 1 ,  respectively. 
Up to  now  the  discussion  has  been  confined  to  the  properties  of  the 

elements  associated  with  linear  analysis,  i  .e.  the  analysis  of  the  pre- 

buckling  state. In the  analysis  of  general  buckling,  the  elastic  stiff- 

ness  matrix [K.] o f  each  element  must  be  supplemented  by  its  geometric 

stiffness  matrix [Gi]. The  latter  represents  the  contribution  of  the 

nonlinear  terms  in  the  strain-displacement  relations  to  the  strain  energy 

of  the  element,  the  linear  terms  being  accounted for by [K.]. 

1 

1 
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The buckl ing  analysis   of  DESAP 2 is  l i m i t e d   t o   b i f u r c a t i o n   i n -  

s tab i l i ty   (c lass ica l ,   Euler - type   buckl ing)  , i n  which case only  the 

quadra t ic  terms i n   t h e  components of  t he   ro t a t ion   vec to r  {w} are in-  

c luded  in   the  formation  of  [Gi] .  The cont r ibu t ion   of   these  terms t o  

t h e   s t r a i n  energy  of an element  is---see  Ref. [SI, p.  7.1-6. 

UG = 5 1 /[ (OxO+O l w z  + P Y 0 + O Z  lux + COZ +Ox m y  
0 2   0 2   0 0 2  

V 
(B.1.9) 

- 2 T  w w  - 2 T 0  w w  
0 
Xy  X Y  Y Z  Y z 

where the   superscr ip t  11011 denotes   that  

the   p rebuckl ing   s ta te ,  and V r e f e r s   t o  

t h e   s t r e s s e s   a r e   e v a l u a t e d   i n  

the  volume of  the  element. 

The rotat ions  are   given  in   terms  of   the  buckl ing 

by 

For a p l a t e   o r  a plane  s t ress   e lement   lying 

displacements  u,v,w 

au 
- GI. (B. 1.10) 

i n   t h e  x-y plane,  

oZ = T = T = 0 .  In  addition,  Kirchoff's  hypothesis  (normals  remain 

normal t o   t h e  middle  surface) i s  e q u i v a l e n t   t o   s e t t i n g  - = - - 

0 0  0 
yz zx 

av a w  
a z  aY 

au 
a Z  ax ,  a n d - =  - -  aw so t h a t  (B.1.9) becomes 

(B. 1.11) 

where No No and No a r e  
x' Y XY 

p rebuckl ing   s ta te  , and A 

t he  membrane s t r e s s   r e s u l t a n t s   a c t i n g   i n   t h e  

is  the  middle  surface  area  of  the  element.  
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In DESAP 2 the  stress  resultants  are  taken  as  constant  within  each 

element  (the  resultants  acting  at  the  center of the  element  are used); 

consequently  they  can  be  taken  outside  the  integral  sign  in (B.l.ll). 

The  geometric  stiffness  matrix [Gi] of an element  is  defined  as 

UG = -i-[ui>  [Gi]{~i) , 1 T  (B.  1.12) 

where {u. 1 is  the  nodal  displacement  vector of t.he element  associated, 

with  buckling  deformation.  Comparing (B.l .lZ)  with (B. 1.  ll), we  con- 

clude  that  the  geometric  stiffness  matrix  has  the form 

1 

The  unit  geometric  stiffness  matrices  [gi Ck)] of the  element  can  be 

calculated  from 

/ [wz + ( a x )  ]dA , 
A 

2 aw 2 

CuilT[g:23Jhil= J[w: + ($ aw 2 ]dA , 
A 

(B.  1.13) 

(B. 1.14) 

It is conventional t o  neg1ect.w for plate  elements,  but  all  the  terms 

in (B. 1.14)  are  included for  the  plane  stress  element. 
Z 

In  the  case of one-dimensional  elements  parallel  to  the  x-axis, 

we  use 

(B.  1.15) 

L 
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where N is  t h e   a x i a l   t e n s i l e   f o r c e   p r i o r   t o   b u c k l i n g ,  and L denotes 

the  length  of   the  e lement .  The a x i a l   f o r c e  is  aga in   t aken   to   be  con- 

s tant   throughout  L,  which enables   us   to  write 

0 

where t h e   u n i t   s t i f f n e s s   m a t r i x  is  obtained from 

(B. 1 .16)  

(B. 1.17) 

Equation  (B.1.15)  can  be  derived from (B.  1.11)  only by assuming t h a t  

the  e lement   does  not   undergo  tors ion  in   the  course of buckling. As a 

r e s u l t ,  DESAP 2 i s  not   capable   of   handl ing  tors ional   or   la teral-  

to rs iona l   buckl ing  of beams. The geometr ic   s t i f fness   mat r ix   for   the  

l a t t e r  i s  very  complex---see Ref. [SI , p. 7.2-8 -- and does  not   readi ly  

lend i t se l f  to   the   redes ign   process .  

The unit   geometric  st iffness  of  each  element i s  ca l cu la t ed   i n  

DESAP 2 as  soon  as  the  element  data i s  r ead   i n ,  and i s  s tored  on an 

auxi l iary  s torage  device.   Pr ior   to   each  buckl ing  analysis ,   the   uni t  

matrices are   read back i n t o   t h e   c o r e ,  and the   geomet r i c   s t i f fnes s  

matrices of  the  e lements   are   reconst i tuted  according  to   (B.1.13)  

o r  (B. 1 . 6 ) .  
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B-2 Stress  Constraints 

At  the  present  time,  the  only  practical  means of handling  stress 

constraints  for  large  structures  seems  to  be  the  concept  of  fully 

stressed  design (FSD). In  a  fully  stressed  structure  each  element 

reaches  its  maximum  permissible  stress  level  under  at  least  one  load 

condition,  unless  it  is  governed  by  the  minimum  size  constraint.  FSD 

does  not  generally  coincide  with  the  minimum  weight  design,  except  for 

statically  determinate  structures,  but  the  differences  in  weight  are 

small  in  most  cases. 

A  typical  failure  criterion of an  element  can  be  expressed  in  the 

general  form 

* 
f((Ni),  iNi),Ai) = 1 , (B.2.1) 

where  EN. )is the  internalforce  vector of the  element  and { N i l  contains 

the  allowable  forces.  Equation  (B.2.1)  may  represent  a  criterion  for 

any  kind  of  failure,  such  as  yielding,  fracture  or  local  instability. 

1 

Let A .  be  the  element  size  for  the  current  design,  and  Ai  the  size 
1 

predicted  for  next  (improved)  design.  The  corresponding  internal  forces 

are  denoted  by  INi}  and  INi),  respectively.  For  the  sake.c?f  clarity, 

we limit  the  discussion  at  this  time  to  a  single  load  condition,  and 

assume  that  each  element  is  subject  to  a  single  failure  criterion. 

1 

If  the  improved  design  is  to  be  fully  stressed,  it  must  satisfy 

1 

f(INi),  {Ni),Ai) = 1 . * t  

(B.2.2) 

The  main  difficulty  in  using (B.2.2)  is  that  it  requires  a  knowledge of 

{Ni}, i  .e.  the  changes in  the  nodal  forces of each  element  caused  by  the 
1 

L 
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redesign.  This  information  can  be  acquired  only  by an inversion of  the 

structural  stiffness  matrix,  which  is  impractical  for  large  structures, 

since  the  banded  form  of  the  structural  stiffness  matrix  is  lost  upon 

its  inversion. 

The  problem  is  greatly  simplified if  we  assume  that  the  nodal  forces 

do  not  change  upon  redesign.  Equation (B.2.2) then  becomes 

1 
which  can  immediately  be  solved  for  A  one  element  at  a  time.  We  have 

now  arrived  at  the  stress  ratio  method of redesign,  which  is  adopted 

for DESAP 1. 

i’ 

” 

The  assumption of no change  in  the  nodal  forces  is  valid  only  for 

statically  determinate  structures  under  dead  (size-independent)  loading, 

in  which  case  a  single  redesign  will  result  in FSD. For all  other  pro- 

blems,  equation  (B.2.3)  is  an  approximation,  and  it  must  be  applied 

iteratively,  updating  {Nil  each  time,  before FSD is  reached. If size- 

dependent  loading  is  present  (e.g.,  gravity  or  thermal  loads),  the 

approximation  may  be  poor  and  cause  difficulties of convergence. 

When  several  load  conditions  and  design  criteria  are  used,  the 

element  size  is  calculated  for  each  combination of loading  and  design 

formula,  and  the  largest  value  is  chosen  as A 
1 

i’ 
Once  the  new  size of the  element  is  known,  the  corresponding  de- 

l t 

sign  variable  is  determined  by  (B.1.2):  Dm = Ai/rli, or  the  minimum 
I * *  

size  constraint: = D (Dm is  the  prescribed  lower  limit),  whichever Dm m 
is  larger. If the  design  variable Dm is common to  several  elements, 
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i . e . ,  i f  equal or propor t iona l   s ize   cons t ra in ts  are used,  the maximum 

value  of Dm is  used;   tha t  is  
1 

1 1 1 * 
Dm = max Ai/ni o r  Dm - - Dm , 

i em 
(B.2.4) 

whichever i s  g r e a t e r .  The nota t ion  icm i n d i c a t e s   t h a t  maximum is ob- 

ta ined from a l l  elements i tha t   share   the   des ign   var iab le  number m. 

The r a t i o  

1 

Rm = Dm/Dm 

i s  ca l l ed   t he  stress r a t i o  of   the   des ign   var iab le .   In   o rder   to  

monitor  the  progress  of  the  design  sequence,  the maximum and minimum 

stress r a t i o s  of   the   s t ruc ture ,  

" 

Rmax m m m '  = max R and Rmin = min R (B. 2.6) 
m 

1 

a r e  computed a f t e r  each  redesign  cycle.  The new design {D 1 i s  s a i d  t o  

be a s t r e s s - c r i t i c a l   d e s i g n  i f  

where 6 is  a small parameter  prescribed by the   user .   S imi la r i ly   the  

design i s  considered  to  be f u l l y   s t r e s s e d  i f ,  i n   add i t ion   t o   be ing  

c r i t i c a l ,  it a l s o  satisfies 

1 - 6 < R  < l + 6 .  - min - ,(B.2.8) 

The values  of Rmax, Rmin and the  corresponding  design  var iable  and 

load numbers are pr in ted   ou t   a f te r   each   redes ign   cyc le .  
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B. 3 Buckling  Constraints 

Buckling  analysis is a very  expensive  operation  that  consumes 

seve ra l  times more computer time than  analysis   of   the   prebuckl ing state.  

Moreover, the  cost   of   buckl ing-constrained  design is  propor t iona l   to  

t h e  number of   load  condi t ions  used,   s ince  each  load  condi t ion  resul ts  

i n  a d i f fe ren t   geometr ic   s t i f fness   mat r ix ,   thus   requi r ing   separa te  

ana lys i s .  

In   o rder   to   keep   the  computer costs   within  reasonable  limits, 

DESAP 2 allows  only one load  condition  to  be  used  for  buckling con- 

s t r a i n t s .   T h i s   r e s t r i c t i o n   d o e s   n o t   a p p l y   t o  stress c o n s t r a i n t s ,  where 

t h e  number of  load  conditions i s  l imited  only by  the  avai lable   core  

s to rage .  

Constraints  on general   buckl ing  loads  are   handled  in  DESAP 2 

by the  technique  descr ibed  in   References  [3 ,4] .  The procedure i s  not  

only  applicable  to  buckling  loads,   but  can  also  be  used  for  displacement 

cons t ra in ts   as  was done i n  DESAP 1 [ l ]  . 
In the   ana lys i s   o f   buckl ing ,   the   loads   appl ied   to   the   s t ruc ture  

are t aken   t o   be   p ropor t iona l   t o  a s i n g l e  load parameter  p.  Denoting 

t h e   c r i t i c a l   v a l u e s   o f  p by pr, p1 f p2 - < . . . , t h e   c o n s t r a i n t s  on t h e  

buckling  loads  are 

Pr L P*Y r = 1 , 2 ,  ..., R ,  (B.3.1) 

where p* i s  the  prescr ibed  lower bound  and R equals   the  number o f  de- 

grees of  freedom i n   t h e   f i n i t e   e l e m e n t  model. The load  vector   of   the  
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s t r u c t u r e  at buckling is  thus  given by 

{ Q * }  = p*{Q} , (B.3.2) 

where { Q }  i s  the  load  vector  used  in  prebuckling  analysis.  If { Q }  

represents   the   des ign   load   wi th   respec t   to   s t ress   cons t ra in ts ,   then  p* 

can  be in t e rp re t ed  as the   add i t iona l   f ac to r   o f   s a fe ty   aga ins t   gene ra l  

buckling. 

The cons t r a in t s  (B. 3.1)  can .be d iv ided   in to  two c a t e g o r i e s :   i f  

the   equal i ty   s ign  governs  the  opt imal   design,   the   constraint  i s  s a i d   t o  

be  act ive;  i f  the  inequal i ty   occurs ,   the   constraint  i s  passive.   This 

d iv is ion  i s  not known, of   course,   unt i l   the   f inal   design i s  reached, 

but  for  notational  convenience we presume tha t   t he   ac t ive   cons t r a in t s  

a r e   l i s t e d  first,  s o  t h a t  (B.3.1)  can  be replaced by 

Pr  = P; Y r = 1 , 2 , . . . ,  Rac t  
( B . 3 . 3 )  

Pr ’ P; , r = R a c t  + l , . . . ,  R , 

where Ract denotes  the number of   act ive  buckl ing  constraints .  DESAP 2 

allows for R < 2 ,  i . e .  it assumes t h a t  number of   act ive  buckl ing 

modes never  exceeds  two.  Theoretically it i s  poss ib le   for   the   op t imal  

design  to  be  governed by t h r e e   o r  more  modes (al l   having  the same buckling 

load),  but  such  cases  have  not y e t  been  encountered. 

ac t  - 

In   addi t ion   to   buckl ing   cons t ra in ts ,  we must a lso  account   for  

limits on element  sizes:  

A. > A?, i . e . ,  D > D* . 
1 -  1 m -  m [B. 3 . 4 )  
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A pass ive   des ign   var iab le  is governed by the  minimum size cons t r a in t  
* 

i n   t h e   f i n a l   d e s i g n ,  i . e . ,  Dm - - Dm, whereas  an ac t ive   des ign   var iab le  
* 

is  determined by the   d i sp lacement   cons t ra in t ,   in  which case D '  m ' Dm* 

In   the  mathematical   t reatment   that   fol lows,  it is  convenient   to  

replace  (B.3.1) and (8.3.4) by t he   equa l i ty   cons t r a in t s  

(B.3.5) 

where a  and  b a r e   t o  be  viewed a s   va r i ab le s   f r ee  from cons t r a in t s .  r m 
The design  object ive i s  t o  minimize the   to ta l   weight  of t he   s t ruc -  

t u r e  W = CWi . S u b s t i t u t i n g   f o r  Wi from (B.  1.1) and (B. l . Z ) ,  we have 
i 

W = Cp.n.D . i l l m  (B. 3 .6 )  

Minimizing (B.3.6 1 subject  to  (B.3.5) i s  equ iva len t   t o  making the  

fol lowing  funct ion  s ta t ionary:  

(B. 3. 7) 

where hr and urn are  non-negative  Lagrangian  multipliers.  The operat ions 

air/aDm = 0,  aV/Sar = 0 and aV/abm = 0 yie ld ,   respec t ive ly ,  

(B.  3.8) 

Arar = 0 , (B. 3.9) 

umbm = D (B.3.10) 

where we used t h e  no ta t ion  ( ) = a (  
,m 
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Inspection of (B.3.5),  (B.3.9)  and  (B.3.lO)reveals  that 

* - > 0 if pr = pr (active  constraints) 
Ar = 0 if p, > pr * (passive  constraints), 

* - > 0 if Dm = Dm (passive  design  variables) 

= 0 if  Dm > Di (active  design  variables) , 

which  enables  us  to  rewrite  the  optimality  criterion  (B.3.8)  as 

> 0 if  Dm = Dm 
Pi'li - XrPr,, * 

i Em r act = 0 if Dm > Dm a 

(B. 3.11) 

The  notation r act  shows  that  the  sum  is  to  be  taken  over  the  active 

displacement  constraints.  Introducing  the  unit  weight of the  m 

design  variable 

th 

(B.3.12) 

(B.3.11)  becomes  for  the  active  design  variables 

1 R act - 1 XrPr,, = 1  (B.3.13) 
Pm r=l 

The  redesign  formula  for  the  active  design variableis obtained 

directly  from  the  optimality  criterion.  Multiplying both sides of 

(B.3.13)  by  (1-a)Dm, where a is a constant  to  be  determined  later,  and 

rearranging  terns,  we  get 

Dm R act 

'm r=1 'rPr,rn 
Dm = CCDm + (1-a)- 
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The funct ion of  the  design  a lgori thm i s  t o  so lve   the  last  equation by 

success ive   i t e r a t ions .  The redes ign   formula   used   in   each   i t e ra t ive   s tep  

i s  
D Ract 

Pm r=l ' 'rPr,m 9 

D '  = CY, D + (1-a) - m 
m m (B.  3 .14)  

where Dm i s  the   cur ren t   des ign   var iab le ,  and D '  r epresents  i t s  improved 

value.  The constant a can now be  recognized  as   the  re laxat ion  factor ,  

which is u t i l i zed   t o   con t ro l   t he   conve rgence   cha rac t e r i s t i c s   o f   t he  

i t e r a t ive   p rocedure .  

m 

Each i t e r a t ive   des ign ,  i . e .  each  application  of  (B.3.14) i s  followed 

by an ana lys i s   o f   resu l t ing   s t ruc ture ,  so t h a t  Xr and p can  be  updated. 

The computation  of  these  parameters will be  discussed  next.  
r , m  

Buckling i s  governed by the   ma t r ix   cha rac t e r i s t i c   va lue  problem 

where [K] and [ G I  a r e   t h e   e l a s t i c  and geometr ic   s t i f fness   matr ices  of 

t he   s t ruc tu re ,   r e spec t ive ly ,  and Cu) is  the  nodal  displacement  vector 

due to   buckl ing .  The gradien ts  o f  the  buckling  parameters can  be 

shown t o  be [3 ,6]  

(B.  3.16)  

where  {u (r)  1 i s  the,   nodal  displacement  vector  associated  with  pr.  

I t  i s  assumed, as was done in   the   s t ress -cons t ra ined   des ign ,   tha t  

t he  changes in   t he   i n t e rna l   fo rces  between two successive  redesign 
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cyc le s   a r e   neg l ig ib l e ,   i n  which case we can set [G ] = [ O ] .  In  addi- 

t ion ,   the   buckl ing  modes are   normalized  with  respect   to  [ G I ,  so t h a t  

(B. 3.16) becomes 

,m 

(B. 3.17) 

Noting  that   only  the  e lements   that   share   the  design  var iable  D con- 

t r i b u t e   t o  [ K  1, (B.3.17)  can  be r ewr i t t en  as 

m 

,m 

(B.3.18) 

Util izing  (B.1.2) and (B. 1 .3 ) ,   t he   de r iva t ives  of the  e lement   s t i f fness  

matrices  in  (B.3.18)  are 

(B. 3.19) 

Since  the  unit   st iffness  matrices  of  each  element  are computed  and 

s tored   a t   the   beginning  of the program  (they do not change upon redesign) ,  

t he   g rad ien t s  of the  buckling  load  parameters are r ead i ly   ca l cu la t ed  Once 

the  buckl ing modes o f  the   cur ren t   des ign   a re   ava i lab le .  

I t  must  be r e i t e r a t e d   t h a t  (B.3.18) i s  va l id   on ly  when the   i n t e rna l  

fo rces   p r io r   t o   buck l ing  are independent of  the  design  var iables .   This  

condition is  s a t i s f i e d   o n l y  i f  the   p rebuckl ing   s ta te  is s t a t i c a l l y   d e t e r -  

minate and size-dependent  loads  (gravity  loading and thermal   s t resses)  

are absent.  

If the   p rebuck l ing   s t a t e  is  s t a t i ca l ly   i nde te rmina te ,  (B.3.18) 

is  only an approximation, which  would no t   necessa r i ly   l ead   t o  a t r u e  
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optimal  design. The use  of   the  equat ion is however,  compatible  with 

t h e  stress r a t i o  method  of redesign,  where the  changes  of  internal 

forces  were also  neglected.  Note tha t   t he   u se   o f   t he   exac t   g rad ien t  

expressions (B.3.16) is  p rec luded   fo r   t he   r eason   s t a t ed   i n  Sec. B . 2 :  

it would requi re   the  knowledge  of (Ni,m), t he   g rad ien ts   o f   the   in te rna l  

force  vector  of  each  element. 

If the   p rebuckl ing   s ta te   o f   the   s t ruc ture  i s  s t a t i ca l ly   de t e rmina te  

and i f  the  loading is  not  size-dependent,   the  user  of DESAP 2 should 

spec i fy   t h i s   i n   t he   i npu t   da t a .   S ince   t he   geomet r i c   s t i f fnes s  w i l l  be 

unchanged during  redesign,   the  program w i l l  compute [GI only  once, 

namely a f t e r   t h e  first prebuckling  analysis.   Otherwise [GI w i l l  be 

recomputed i n  each  redesign  cycle   f rom  the  uni t   geometr ic   s t i f fness  

matrices of  the  elements.  

The Lagrangian  multipliers  are  chosen  such as t o  make t h e  improved 

des ign   buck l ing -c r i t i ca l ,   i . e . ,   t hey   a r e   ca l cu la t ed  from the  condi t ion 

p i  = p;, r = 1, 2 ,  ..., Ract. Using the   no ta t ion  6p? = p i  - p  and r 

6Dm = D h  - Dm 9 
t he  change i n  the  nodal  displacements  can  be  estimated 

from the  l inear  approximation 

M 
&Pr - Pr,m m 

- 6D . 
m= 1 

(B. 3.20) 

Passive  design  variables  are  governed by the  minimum size cons t r a in t  

a f t e r   r edes ign .  Hence, 6D = D* - Dm, making t h e i r   c o n t r i b u t i o n   t o  

(B. 3.20) 

m m  

M 
( B . 3 . 2 1 )  
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The improved values of  act ive  e lements  are given by (B.3.14),  which 

r e s u l t s   i n  
M .I Ract  

(6PJact = - (1-a> c Pr,,Dm (1 - - 'sPs,m 
1 ) . (B.3.22) 

m a c t  'm s=l 

The t o t a l  change i n  pr i s  therefore ,  

(B. 3.23) 

Se t t i ng  6pr = p; - p,,  and s u b s t i t u t i n g  (B.3.21) and (B.3.22) i n  

(B.3.23), we obtain  the  fol lowing  s imultaneous  equat ions  for   the 

Lagrangian  multipliers X s = 1 , 2 , .  . . , 
S' Ract  : 

Ract  
(1-a) c Xs c Ps,mPr,m 

s=l m a c t  pm Dm 

(B. 3.24) 

M M 
= (1-a) Pr,m D - 1 Pr ,,CD;-Dm) + P; - Pr 9 

m a c t  m pass 

r = 1 , 2 ,  ..., Ract . 

The solut ion  of   (B.3.24)   requires   the  pr ior  knowledge  of t he  number 

of   ac t ive   buckl ing   cons t ra in ts  Ract, and the   ac t ive-pass ive   ident i t ies  

of the  design  var iables .  As th i s   in format ion  i s  genera l ly   no t   ava i lab le ,  

the  redesign i s  car r ied   ou t  by an i te ra t ive   p rocedure  diagramed i n  

Fig.  B.3.1. As noted  previously,  a maximum of two buckling modes 

are assumed t o  be  act ive a t  any s t age  of  the  design  procedure,  i . e . ,  we 

take Ract f 2 .  
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- 
Compute P ~ , ~ ,  Label a l l  Dm 

Start r = 1,2 act ive ,   unless  

m = 1.2 ,  ..., H Pr,m c 0 ,  r = 1.2 

1 
7 

Ract = 2. 

Solve  (6.3.24) 
> - 

for x1 E x2 /- 

Solve  (0 .3 .24)   Solve (6 .3.24)  

for  x, f o r  X1 

m=1,2, ..., M 
Yes 

V 

Compute D '  

from ( 6 . 3 . 1 4 )  

Label 
Label 

D passive 
Dm a c t i v e  

Return > 

Figure B . 3 . 1  

Flow Diagram f o r  One Redesign  Cycle. 
(Buckling  Constraints) 
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The flow  diagram i n  

omits   the  paths   that  are 

s ingular   o r   have  a small 

Fig.  B . 3 . 1  is  somewhat s impl i f ied ,  as it 

followed i f  the   equat ions   for  X1 and X2 are 

determinant.   In  general ,  i f  A -+ + m i s  - 
ind ica ted  by the  equations,   the  corresponding  buckling  constraint  i s  

taken as passive,  i . e .  X i s  t r e a t e d   i n   t h e  same manner as i f  it were 

negat ive.  

r 

After  each  buckling  analysis,   but  before  buckling-constrained 

redesign,   the   buckl ing  ra t ios   of   the   current   design 

Qr = P*/P, > (B.  3 . 2 5 )  

a r e  computed  and p r in t ed .  A buckling mode (rth mode) is  considered  to  be 

p o t e n t i a l l y   a c t i v e   o n l y   i f  

where w < 1 i s  a user-supplied  constant and R i s  the  maximum s t r e s s  

r a t i o   d e f i n e d   i n  ( B . 2 . 6 ) .  I f   t h e  above inequal i ty  i s  v io l a t ed ,   t he  

max 

corresponding mode is  ignored  in  the  subsequent  buckling-constrained 

redesign  operat ion.  

A design i s  s a i d   t o  be " buck l ing -c r i t i ca l  i f  

1 - 6 <  -sax = max Q < 1 + 6 , (B. 3 . 2 7 )  r -  r 

where 6 is  a small parameter   that  was also  used  in   def ining a s t r e s s -  

c r i t i c a l   d e s i g n  --- see  (B .2 .7 ) .  The design is  considered  acceptable 
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i f  one  of the  fol lowing  condi t ions are met: 

1 )  A l l  des ign   var iab les  are pass ive  and %ax - < 1 + 6.  

2 )  The design i s  buck l ing -c r i t i ca l  and the   op t imal i ty  

c r i t e r i o n  (B.3.13) is  s a t i s f i e d   w i t h i n  a prescr ibed   la t i tude :  

. Ract 
1 - 56 < -  I c x r p  < 1 + 5 6  

- Prn r=l r , m  - (B.3.28) 

f o r  a l l   act ive  e lements .   Experience  with  the program  has shown t h a t  

t he   " l a t i t ude"   i n  (B.3.28)  should  be  considerably less s t r ingen t   t han  

i n  (B.3.27);  hence  the  use of 56 i n   t h e  last inequa l i ty .  

The quan t i ty  

. Ract 

which we cal l   the   opt imal i ty   index  of   the  design  var iable  D i s  

p r in t ed   fo r  each  design  variable  after  every  redesign  cycle,   together 

with i t s  ac t ive -pass ive   c l a s s i f i ca t ion .  

m y  
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B.4 S t r e s s  and  Buckling Constraints  

If both stress and buckl ing  constraints  are present,   each 

redesign  cycle is  d iv ided   in to  two p a r t s .  F i r s t ,  t h e   s t r u c t u r e  is  

redes igned   wi th   respec t   to   the   s t resses   on ly ;   the   buckl ing  con- 

s t r a i n t s  are ignored  in   this   phase  of   design.  The next   s tep  i s  t h e  

buckling-constrained  design, where the  design.-rrar iables   just   obtained 

from the  s t ress-constrained  phase are used as the  minimum s i z e   c o n s t r a i n t s .  

The buckling-constrained  redesign  phase will be  skipped i f  the  

ana lys i s  of  the  current   design ,shows t h a t  

%ax 5 Rmax J 

(B.4.1) 

where Rmax and Sax a r e   t h e  maximum s t r e s s  and buckl ing   ra t ios  de- 

f i n e d   i n  (B.2.6) and (B.3.27),   respectively.  The constant w < l i s  

also  used  in   conjunct ion  with (B.3.26) i n  choosing  the  potent ia l ly   act ive 

buckl ing  constraints .  
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B.5 Uniform Scaling  Operation. 

We recall tha t   t he   r edes tgn   equa t ions  .for both,  stress and 

buckl ing   cons t ra in ts ,  were based on cer ta in   s implifying  approximations.  

The stress ratio  redesign  formula  (B.2.3) and the   g rad ien t s  of t h e  

buckling  parameters  (B.3.18)  were  both  derived  under t h e  assumption  that  

t h e   i n t e r n a l   f o r c e s  are unchanged during a redesign  cycle .   In   addi t ion,  

the  predicted  changes  in  the  buckling  parameters  (B.3.20) were 

l inea r i zed .  As a consequence of these  approximations,   the   redesign 

process  becomes  an i t e r a t ive   p rocedure   cons i s t ing  of  repea ted   appl ica t ions  

of the  redesign  formulas  unti l   convergence i s  achieved. 

I t  i s  f requent ly   advantageous   to   in te r rupt   the   des ign   procedure  by 

the  so-cal led  uniform  scal ing  operat ion, .   where a l l  the   des ign   va r i ab le s  

are changed by the  same " scale f a c t o r  ~.r: 

DA - p Dm . (B.5.1) 

The scale f a c t o r  is  ca l cu la t ed  from the   cond i t ion   t ha t   t he   s ca l ed   des ign  

{D') should  be c r i t i ca l ,  i .e.  

(B.5.2)  

DESAP 2 gives   the  user   the  opt ion  of   using  the  uniform  scal ing 

operat ion whenever the   cur ren t   des ign  is not  cr i t ical .  Once the   des ign  

has   been  scaled  to   the c r i t i ca l  s ta te  (more than  one  scal ing  operat ion 

may be   r equ i r ed   t o   ach ieve   t h i s ) ,   t he   r edes ign   equa t ions  w i l l  be   appl ied 

i n   t h e   u s u a l  manner. 

This method o f   des ign   o f f e r s  two adva tages   ove r   t he  use of t h e  

redesign  equat ions  above.   Firs t ly ,   the   usq of t he   s ca l ing   ope ra t ion  
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results  in  a  sequence of critical  designs  which  are  very  useful  in 

monitoring  the  design  process.  In  particular,  the  weight  comparison  of 

the  critical  designs  can  be  used  to  terminate  the  design  whenever  the 

weight  reduction  becomes  small, or ceases  altogether. This .is  especially 

important  when  approximate  optimization  techniques,  such  as  the  fully 

stressed  design  principle,  are  used. 

The  second  advantage  of  using  scaling  is  that  it  prevents  inter- 

mediate  designs  from  departing  excessively  from  the  critical  state. 

This  in  turn  has  a  stabilizing  influence on the  convergence of  the 

design  process,  and  in  some  problems  it  even  makes  the  difference  be- 

tween  a  convergent  process  and  no  convergence  at  all. 

The  scale  factor for the  stress  constraints  is  simply 

(B.5.3) 

where R is  the  maximum  stress  ratio  obtained  by  the  stress  ratio 

method - -  see (B.2.5). The  scale  factor  is  exact --- that  is,  the 
resulting  design  will  be  precisely  stress-critical --- if  the  internal 

forces  remain  unchanged  upon  scaling.  This  condition  is  satisfied, 

apart  from  statically  determinate  structures,  if  all  element  stiffness 

matrices  have  the  form 

max 

(B.5.4) 

where  n  is  common  to  all  elements,  and  if  the  loading  is  size-independent. 

It can  easily  be  shown  that if (B.5.4) is  satisfied,  the 

buckling  -constrained  uniform  scaling  is  also  exact,  the  scale  factor 
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being 

(B.5 .5)  

where sax is  the  maximum  buckling  ratio  defined  in (B.  3 . 2 7 ) .  

For  the  problems  where  the  scaling  operation  is  inexact,  the 

scale  factor  for  the  buckling  constraints  must  be  computed from (B. 3 . 2 0 ) .  TO 

obtain  the  scale  factor p(B)  which  would  make  the rth buckling  load 

critical,  we  substitute bP, = I?; - pr and  dDm = D; - Dm = (p, (B’ -l)Dm, 

obtaining 

r 

Solving  for  the  scale  factor,  we  get 

(B.5 .6)  

A scale  factor  is  computed  for  each  potentially  active  buckling 

constraint  from ( B . 5 . 6 ) ,  and  the  maximum  value  is  used  for p ( B )  @ i .e. 

(B.5.7)  

The  factor  used  in  the  scaling  operation (B.5.1)  is the  larger of 

p = max(p (SI , p ( B ) )  (B .5 .8)  

If  the  structure  meets  the  conditions  for  exact  scaling,  the  user 

should  specify  this  in  the  input  to DESAP 2 ,  together  with  the  inertia 

exponent  n  in ( B . 5 . 4 ) .  The  buckling  scale  factor  will  then  be 
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computed  from (B.5.5) and  the  enalysis  of  the  scaled  structure  will 

be  omitted,  resulting in a  considerable  saving  in  computer  time. 

Otherwise, (B.5.6) and (B.5.7) are.used  to  calculate  and  the 

scaled  design  will  be  reanalyzed  and if  not  critical,  will  be  scaled 

again. 

DESAP 2 gives  the  user  the  option of dispensing  with  scaling 

altogether.  The  no-scaling  option  could  be  used  if  the  scaling  oper- 

ation  is  inexact  and  the  intermediate  critical  designs  are of no in- 

terest.  This  could  save  a  substantial  amount of computer  time,  but  at 

the  expense  of  losing  some  control  over  the  convergence  of  the  design 

procedure. 

Scaling  should  not  be  used  if  the  loading  is  dominated  by  thermal 

or gravity  loads  and  the  element  stiffness  matrices  have  the  form 

[Ki] = [ki]Ai  (linear size-stiffness  relationship).  It  is  readily  seen 

that  under  these  circumstances  a  uniform  scaling  operation i s  entirely 

ineffective,  since it leaves  the  stresses  and  buckling  loads  unchanged. 

If  the  uniform  scaling  option  is  chosen,  the  weight of each  critical 

design  is  calculated  and  the  smallest of these  weights,  Wmin,  is  stored. 

The  design  procedure  is  terminated  whenever 

(B. 5.9) 

where  W  is  the  weight  of  the  current  critical  design  and E is  a  small 

prescribed  constant.  This cut-off criterion  prevents  further  redesign 

operations if these  are  going to result  in  a  weight  increase. 



B.5.5 

The  scaling  operation is always  by-passed if l~ > 2,  in  order  to 

avoid  the  corresponding  large  weight  increase.  Experience  has  shown 

that  by  preceding  uniform  scaling  with a  redesign  operation,  a  lower 

weight  is  obtained  than  from  the  scaling-redesign  sequence.  It  should 

be  pointed  out  that a large  scale  factor  would  arise  only  during  the 

first  design  cycle if the  initial  design  is  poorly  chosen. 

. . .  . 
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C. ORGANIZATION OF THE  PROGRAM 

C. 1  Overlay  Tree 

The  structure of the  program is illustrated  with  the  overlay  tree 

in  Fig.  C.l.l  Details of the  element  subroutines  are  shown  separately 

in  Figs.  C.1.2 t o  C.1.7. 

Additional  elements  can  be  added  to  the  program  by  replacing  the 

call  NOELEM  in  ELTYPE  with  the  new  element  subroutines. The element  code 

numbers  ("TYPE) 5 and 8 have  been  reserved for this purpose. 



MTYPE = 1 2 3 4  6 7 5 . 8  

I '  
I .  I I I I I 

I TRUSS BEAM PLANE SHEAR SHELL aoUND NOELEM 
I 
I f  I I I I I 

!I 
J I 

MTYPE = 1 -I 2 3 4 6 7 15.8 
I 
I 
I 

I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 

Element data  processing 
(see  Figs.  C.1.2  to  C.1.7) 

Executed  once  per program  run 

I 

lement stress  recovery & stress  ratio  redesign 
(see  Figs.  C.1.2 to C.1.7) 

Executed  once w i t h  each redesign  or  scaling  cycle 
1 

Figure C.l.l 

Overlay Tree f o r  DESAP 2 .  
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Element dota  processing 

0 TRUSS 

61 lJoHNsl 
Element stress  recovery G stress   rat io  redesign 

Figure C.1 .2  

Overlay  Tree f o r  Bar Element 

I 

I 
NEWnI BCEOM SLAVE REARAN C A L W  ELGSUW 

I 
VECTOR DOT CROSS 

Element data  processing 

Element stress  recovery & stress  ratio  redesign 

Figure  C.1.3 

Overlay  Tree for  Beam Element 



INTBRP’ ‘iLGSIIW CALBAN REAIblN QUAD ELAW 

SllEAR 

INTERP FPANEL SPGEOM  C4LBAN  ELGSUW 

1 
VECTO DOT  CROSS 

Element data  processing 

PLANE 

Element strcss  recovery & stress ratio  redesign 

Figure C . 1 . 4  

Overlay  Tree f o r  Plane  Stress Element 

Element data  processing 

SHEAR 

a EARAN ELGSTW 

Element s t r e s s  recovery 6 stress  ratio  redesign 

Bgure  C.1.5 

Overlay  Tree f o r  Shear  Panel 



Element data  processing 

0 SIIELL 

a R E A M  ELGSIW 

Element stress recovery E stress  ratio  redesign 

Figure C .1 .6  

Overlay  Tree for   Plate-Shel l  Element. 

Element data  processing 

.8 S'TRSC 

Element stress  recovery E stress  ratio  rcdesign 

Figure C.1 .7  

Overlay Tree f o r  Boundary Element 
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C . 2  Element Subroutines 

The element  subroutines of DESAP 2 are constructed  in   such a 

manner as t o   f a c i l i t a t e   m o d i f i c a t i o n s  by the   u se r .  Each element  sub- 

routine  package  consists  of two par ts :   e lement   data   processing,  and 

s t ress   recovery  combined w i t h   s t r e s s   r a t i o   r e d e s i g n .  The element  data, 

including  the  design  information,  is  r ead   i n  by the  processor  sub- 

rout ines  shown by the   dashed   l ines   in   F igs .  C.1 .2  t o  C.1.6.  Provision 

has  been made f o r  more than one  such  processor  subroutine  with  each 

element  package,  the  different  processors  being  dist inguished by t h e i r  

construct ion code numbers (KODE). This scheme al lows  the  user   to   pro-  

v ide   h i s  own processor   subrout ines  which will b e s t   s a t i s f y   h i s   s p e c i a l  

design  requirements. 

A f t e r   t h e   d a t a   f o r  an element i s  read   in ,  i t  is  immediately  pro- 

cessed and the   r e su l t s   p l aced  on auxi l iary  s torage  devices .   Standard 

computations,  such as the   fo rma t ion   o f   t he   un i t   e l a s t i c  and  geometric 

s t i f fness   mat r ices ,   t ransformat ion   of   coord ina tes ,   e tc  , are  handled 

by cal l ing  the  appropriate   e lement   computat ional   subrout ines ,   ident i f ied 

by t h e   s o l i d   l i n e s .  No modification by the   u se r  is  requi red   here ,   s ince  

these  sub-rout ines   are   independent   of   the   construct ion  detai ls  and  de- 

s i g n   c r i t e r i a .  

The processed  element  data  consists  of:  

1)  Element u n i t   e l a s t i c   s t i f f n e s s   m a t r i c e s  and load  vectors .  

2 )  Element uni t   geometr ic   s t i f fness   mat r ices .  

3) Element uni t   force  recovery  matr ices  and force   vec tors .  

4)  Data assoc ia ted   wi th   fa i lure  and l o c a l   i n s t a b i l i t y   c r i t e r i a .  

The f i rs t  th ree  sets o f   da t a   a r e   s to red   i n  a s tandard form (common t o  a l l  

elements),   whereas  the  format  of  the  failure and l o c a l   i n s t a b i l i t y   d a t a  



c.2.2 

i s  completely  f lexible  --- it may, f o r  example,  contain  parameters  of  the 

fa i lure   equat ions   (as   in   the   subrout ines   p resent ly   p rovided) ,   o r   pure ly  

numer ica l   da ta   in   t abular  form. 

Following  each  prebuckling  analysis  of  the  structure,   the  element 

nodal  forces are recovered by subrout ine STRSC. The appropriate  - design 

subrout ine is  then  used t o  compute t h e   s t r e s s e s  and ca r ry   ou t   s t r e s s  

r a t io   r edes ign .  The des ign   subrout ines ,   a l so   ident i f ied  by the  dashed 

l i n e s   i n   F i g s .  C . 1 . 2  t o  C.1.6,  must  be  compatible  with  the  corresponding 

processor   subrout ines  --- t h a t  i s ,  i f  t h e   u s e r   s u p p l i e s   h i s  own processor ,  

he  must a lso  have a matching  design  subroutine,   both  labelled  with  the 

same construction  code. 

Note t h a t   t h e  boundary  element,  Fig.  C.1.7, i s  no t   sub jec t   t o  

redesign  and,  therefore,   lacks a construct ion code  and design  sub- 

rout ine .  

The user-supplied  processor and design  subrout ines   are   to   be  in-  

se r ted   in   the   p lace   o f  NOELEM and RETURN, respec t ive ly ,  shown i n  

Figs .  C . 1 . 2  t o  C.1.6. 
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C.3  Storage  Requirements 

The  common  in-core  storage  blocks  used  in  DESAP 2 are: 

1) COMMON/JUNK/---368  locations---is  used  for  storage  of  miscellaneous 

data,  as  its  name  implies. 

2) COMMON/ELPAR/---33  locations---serves  for  storage of parameters  that 

control  the  execution of the  program. 

3) COMMON/UNITS/---12  locations---contains  the  assignments  (numbers)  of 

the  input-output  units. 

4) COMMON/EM/---5548  locations---is  used  primarily  for  processing  of 

element  data. 

5) COMMON/CONTR/---29  locations---contains  control  data  for  the  redesign 

operations. 

6 )  Unlabelled  storage  area A(n). This  is  the  main  working  area of the 

program  and  its  dimension  largely  controls  the  allowable  size of the 

structure.  The  capacity of the  program  can  be  adjusted  by  changing 

rtn1r in  the  following  statements  at  the  beginning  of  the  main  program: 

DIMENSION  A (n) 

REAL*8  AD (n/2) 

EQUIVALENCE (A(1) , AD(1)) 

MTOT = n 

The  availability of the  required  storage  in A(n) is  checked  at  various 

stages  of  the  program,  and if insufficient,  an  error  message  is  printed 

(subroutine  ERROR)  and  the  execution of  the  program  terminated.  The 

minimum  value of trnrr required  in  each  subroutine  where A(n)  is used,  is 

listed in  Table  C.3.3. It  is  advisable, however,  to  use  the  largest 

possible  value for 'hrt, since  this  would  reduce  the  time  spent  on  the 
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: riuulsfer of data  between  the  auxiliary  storage  devices and the  core .  

”: id!klON/COMPL---852 locations---is  .used  only  in  the  plate-shell   element 

subrout ines .  

The usage of t h e  common blocks i n  the  var ious  subrout ines  is  shown 

in  Table C . 3 . 4 .  



Parameter 

LL 

M 
MM 

MBAND 
NELTYP 

NEQ 

NEQB 

ND 

NG 

N I  

NS 

Nu 

NUMDV 

NLJMEL 

NLJMNP 

NUMGEO 

NUMTC 

NUMFX 

Nv 

NW 

c. 3 . 3  

Descript ion 

Number of load  condi t ions  subject  t o  stress cons t r a in t s  

Max (LL,2) 

2*NEQB+  (MBAND-l)/NEQB 

Band width of s t r u c t u r a l   s t i f f n e s s   m a t r i x  

Number of  element types i n   t h e   s t r u c t u r e  

Number of  degrees  of  freedom  for  the  structure,   i .e. ,  
number of  equations 

Number of   equa t ions   in  a block 
= min{ (n-4*LL)/ [4* (MBAND+LL)] ,n/ [4* (MBAND+M)+l] ,NEQ} 

Number of  degrees o f  freedom f o r  an element  (see  Table C .  3.2) 

Number of   uni t   geometr ic   s t i f fness  matrices f o r  an element 
(see  Table  C.3.2) 

Dimension of  element  design  information  array 
(see  Table  C.3.2) 

Number o f   s t r e s ses   ca l cu la t ed   fo r  an element  (see  Table  C.3.2: 

Number o f   un i t   s t i f fnes s   ma t r i ces   fo r  an element 
(see  Table  C.3.2) 

Number of   design  var iables  

Number of e lements   in   s t ruc ture  

Number of   nodal   po in ts   in   s t ruc ture  

Number of   different   geometr ic   propert ies  
used f o r  an element  type 

Maximum number of  temperatures  for which mater ia l  
p roper t ies  o f  an element  type  are  specified 

Number of   f ixed  end-force  sets  (beam only) 

Number of   uni t   load  vectors   for  an element 
(see  Table  C.3.2) 

Number o f   i n i t i a l   s t r e s s   v e c t o r s   f o r  an element 
(see  Table  C.3.2) 

Table  C.3.1 

List of  Parameters  that  Determine  the  Storage  Requirements. 
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L Truss E 1 ement 1 

Be am 

2 Plate-Shel l  

1 Shear 

1 Plane 

2 

1 Boundary 

Parameters I 

Table C . 3 . 2  

Values of Storage  Parameters f o r  Various  Elements. 
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Subroutine 

I N L  

ADDSTF 

USOL 

PRINTD 

STRESS 

MUL BAN 

DERV 

BDESIN 

ELTYPE 

c. 3.5 

Minimum Required  Value of l tnll  

6*NUMNP+6*LL+2*NEQBXLL 

4* (MBAND+LL)  *NEQB+4*LL 

4* (MBAND+M) *NEQB+NEQB 

6*NUMNP+6*M+2*NEQB*M 

3*NUMDV+4*LL+Z*NEQB+NEQ 

NEQB*  (MBAND+LL)+2*MMXNVEC 

Z*NUMDV+NEQB 

6*NUMDV+4*LL 

NUMDV+lO*NUMNP+m, where l r m r t  depends on the  element  type 
(see  below) 

Sub rout ine  Minimum Required  Value of r r m c l  

TRUSS 

(2+8*NUMTC)*NUMMAT+5*NUMGEO PLANE 

lO*NUMGE0+6*NU"AT+lZ*NUMFX BEAM 

(2+5*NUMTC)*NUMMAT+2*NUMGEO 

SHEAR 

SHELL 

(2+4*NUMTC)*NUMMAT 

(2+7*NLJMTC) *NUMMAT 

Table  C.3.3 

Core Storage  Requirements  for A(n) 

The storage  parameters  are  defined  in  Table  C.3.1.  
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Table C.3.4 

Usage of Common Blocks in Various Subroutines. 



C . 4 . 1  

C . 4  Requirements for  Auxiliary  Storage  Devices 

DESAP 2 requi res   n ine   sequent ia l ly   access ib le ,   auxi l ia ry   s torage  

u n i t s ,  The uni t s ,   toge ther   wi th   the   requi red   s torage   capac i t ies ,  are 

l i s t e d  below. The storage  parameters  can  be  found  in  Table  C.3.1. 

11---is used f o r  permanent s torage  of e lement   load  mult ipl iers  and 

t h e  minimum al lowable  design  var iables .  

No. of   locat ions = 4* (LL+NUMDV) 

IZ---is used for :  

a)  temporary  storage of e lement   s t i f fness  matrices, 

b)   sc ra tch  f i l e  during  solut ion o f  simultaneous  equations, 

c)   s torage  of   displacement   vectors ,  

d)  storage of  the   coord ina te   vec tors   dur ing   buckl ing   ana lys i s ,  

e)  temporary  s torage  of   the  der ivat ives   of   the   buckl ing  parameters .  

No. of   loca t ions  = the   l a rger   o f   the   fo l lowing:  

a )  C [ 2+ND* (ND*2+9) ] , 
NUblE L 

b) 2" [ MBAND/NEQB 1 *MBAND*NEQB, 
c) 2*NEQ*M, 

d) 2*NUMDV. 

13--- is   used  for :  

a )   s c ra t ch  f i l e  dur ing   so lu t ion  of simultaneous  equations, 

b )  temporary  storage o f  e lement   geometr ic   s t i f fness   matr ices ,  

c )   s to rage   o f   s t ruc tu ra l   s t i f fnes s   ma t r ix   and   t he   coord ina te  

vec tors   in   the   so lu t ion   of   equa t ions   dur ing   buckl ing   ana lys i s ,  

d )   s torage  of  mode shapes  during  buckling  analysis. 
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No. of   loca t ions  = t h e   l a r g e r  of  the  following: 

a) 2*NEQ*  (MBAND+LL) , 

b) C [2+ND* (1+2*ND), 
NUMEL 

c) 2*NEQ*  (MBAND+2) , 

d) 4*NEQ. 

I8---is  used  for  permanent  storage  of  the  equation number matrix, 

control  parameters  for  element  subroutines (NPAR), element  unit 

force  recovery  matrices,   element  stress-constrained  design  in- 

formation, and uni t   weights   of   the   design  var iables .  

No. o f  loca t ions  = 6*NUMNP+14*NELTYP+NUMDV 

+ C [ 7+ND+NI+ (ND*NU+4*NW) *2*NS]. 
NLJMEL 

I9- - - i s   used   for :  

a )   s c r a t c h   f i l e   i n   t h e  assembly  of   s t ructural   s t i f fness  and 

geometr ic   s t i f fness   matr ices  , 

b) s c r a t c h   f i l e   i n   t h e   s o l u t i o n  o f  simultaneous  equations  (during 

prebuckling and buckl ing   ana lys i s ) ,  

c )   s c ra t ch   f i l e   du r ing   buck l ing   ana lys i s .  

No. of   locat ions = the   larger   of   the   fol lowing:  

a )  I (NUMEL) I * [ND * (ND*2+9)+2] 

b) IMBAND/NEQB 1*2*MBAND*NEQB, 

c) 4*NEQ. 
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110-- - i s   used   for   s torage   o f   s t ruc tura l   s t i f fness   mat r ix ,   load   vec tors  

and   geomet r i c   s t i f fnes s   ma t r ix   ( s t a t i ca l ly   i nde te rmina te   s t ruc tu res  

only) . 
No. of loca t ions  = 2*NEQ*(2*MBAND+LL+2). 

Ill---is used   for :  

a) permanent  ( indeterminate  structures)  or  temporary  (determinate 

s t ruc tures)   s torage   o f   e lement   un i t   geometr ic   s t i f fness  matrices, 

b)   permanent   s torage   o f   the   s t ruc tura l   geometr ic   s t i f fness   mat r ix  

( s t a t i ca l ly   de t e rmina te   s t ruc tu res   on ly ) .  

No. of   loca t ions  = t he   l a rge r  of the  fol lowing:  

a) C (4+ND*ND*NG), 
NUMEL 

b) 2*NEQ*MBAND. 

112---is used f o r  permanent  storage of element unit s t i f f n e s s  matrices 

and load  vectors ,  and  permanent  storage  of  structural  load  vectors 

due to   s ize- independent   loads.  

No. o f  loca t ions  = C [7+ND+2*ND* (ND+NU+4*NV)] 
NUMEL 

+ Z*LL*NEQ. 

113---is  used  for:  

a )   s torage  of  coordinate   vectors   used  in   buckl ing  analysis ,  

b )   sc ra tch  f i l e  during  buckl ing  analysis .  

No. of   loca t ions  = t h e   l a r g e r  of the  fol lowing:  

a )  4*NEQ, 

b) 2*NEQ* (MBAND+2). 
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The assignments of the   auxi l ia ry   s torage   devices ,   toge ther   wi th  

those of the   input -output   un i t s  (IR = card  reader ,  IW = p r i n t e r ,  and 

I P  = card  punch),  can  be  changed  by  altering  the  assignment numbers a t  

the  beginning of  t h e  Main Program. 
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C.5 Assembly and Solution  of  Simultaneous  Equations 

We denote   the  load  vector  of  t he   s t ruc tu re   r ep resen t ing   t he  

Rth load  condition by {Q 1 and the  corresponding  nodal  displacement 

vec tor  by {u(') 1 .  The equilibrium  equations  governing  the  prebuckling 

s ta te  thus are 

(C.5.1) 

where [ K ]  i s  t h e   s t i f f n e s s   m a t r i x   o f   t h e   s t r u c t u r e ,  

(C.5.2) 

and L represents   the  number of   load  condi t ions.  

The assembly  of  the  equations and t h e i r   s o l u t i o n ,   c a r r i e d   o u t  by 

ADDSTF and USOL, r e spec t ive ly ,  are e s s e n t i a l l y   t h e  same a s   i n   t h e  SOLID 

SAP program. The on ly   s ign i f i can t   d i f f e rence  i s  t h a t  DESAP 2 uses 

double   precis ion  ar i thmetic ,   whereas   s ingle   precis ion was employed i n  

SOLID  SAP. Reconversion  into  s ingle   precis ion i s  no t  recommended, even 

i f  your  machine  carries  above-average number of  digits,   because  roundoff 

e r ro r s   i n   t he   ana lys i s   t end   t o   be   magn i f i ed   du r ing   t he   r edes ign   cyc le .  

The cumulative  buildup of e r r o r  may even l e a d   t o  a non-convergence  of 

the   des ign   process   in   l a rge   s t ruc tures .  

The equations,  i . e .  , t h e  matrices [ K ]  and [Q] , are formed i n  

b locks   in   the   un labe l led  common area  A(n) ,  and s t o r e d  on a u x i l i a r y  

s torage  devices .  The banded s t r u c t u r e  of t h e   s t i f f n e s s   m a t r i x  i s  
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exploited  throughout  the  formation  of  the  equations and t h e i r   s o l u t i o n .  

The s ize  of a block i s  determined  automatically by t h e  computer  once 

the  bandwidth and the  number of  load  vectors  have  been  established. 

There must be s u f f i c i e n t   s p a c e   i n  A(n) f o r  a t  l e a s t  two equations.  

The equat ions  are   solved by the  Gaussian  elimination  procedure,  

one block at a time. The s t r u c t u r a l   s t i f f n e s s ' m a t r i x  is not  destroyed 

during  the  solut ion  procedure.  
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C.6 Solution of Buckling  Equations 

As pointed  out   in   (B.5.15) ,   buckl ing  analysis   leads t o  a matrix 

eigenvalue  problem of order  R (R = number of  degrees of freedom): 

[K]{u} = P[GI * (C.6.1) 

DESAP 2 uses an i t e ra t ive  Rayleight-Ritz  method['/] t o   e x t r a c t   o n l y   t h e  

p o t e n t i a l l y  active eigenvalues  (load  parameters) p") p (2 1 J . .  . , p (Ract) 

and the  corresponding  eigenvectors  (buckling modes) { u ( ~ )  1 } J .  . . , 

The f irst  s t e p  is  to   introduce  the  R-dimensional   coordinate   vectors  

{ z ( r ) ) J  r = 1,2 J . . .  and to   express   the  nodal   displacement   vector  

i n   t h e  form 

JRac t  J 

where ys are  called  the  Rayleigh-Ritz  coordina 

can  a lso  be  wri t ten as 

{u} = [Z]  ty} J 

ltes. Equa 

(C.6.2) 

t i o n  (C. 6.2) 

(C.6.3) 

The coordinate  vectors  can  be  interpreted as t h e  f irst  approximation 

f o r   t h e   a c t i v e   b u c k l i n g  modes,  whereas tu )  represents  an  improved 

approximation. 

Once the  coozdinate   vectors  have  been  chosen,  the  Rayleigh-Ritz 

coordinates  can  be  obtained by minimizing  the  potential   energy of 
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the  buckling  deformations : 

(C.6.4) 

Subs t i tu t ing  (C .6.3) i n  (C .6.4) and  applying  the  operations 

aE/ay = 0 ,  r e su l t s   i n   t he   r educed   (o rde r  Ract) eigenvalue  problem 
s 

[K']{y) = p[G'l{y) , (C.6.5) 

where 

Since R < 2 i n  DESAP 2 ,  t he   so lu t ion   o f  (C.6.5) can  easi ly   be  wri t ten 

down once [ K ' ]  and  [GI]  have  been  formed. 

a c t  - 

The improved es t imate   for   the   buckl ing  modes can now be  obtained 

by subs t i tu t ing   the   e igenvec tors  of (C.6.5) {y") 1 ,  {y(2) 1 ,  . . . , 
{y  (Ract) 1 i n  (C.6.3). Thus 

o r  

(C.6.7) 
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I t  i s  shown i n  [7] t h a t   t h e  knowledge of [U] enables   us   to   ob ta in  

a bet ter   approximation  to   the  coordinate   vectors :  

which  can  be  used in   t u rn   t o   ob ta in   c lose r   e s t ima tes  of t h e   c r i t i c a l  

load  parameters and the  buckl ing modes. The process i s  repea ted   un t i l  

t he  change in   t he   e igenva lues  becomes s u f f i c i e n t l y  small: 

max l ~ p ( ~ ) / p ( ~ )  I 5 0.005 , (C.6.9) 
r 

where Ap (r) i s  the  change i n  p Ir)  between t h e   l a s t  two i t e r a t i o n s .  

Since  the  inversion  of a banded matrix i s  a ve ry   i ne f f i c i en t  

opera t ion ,   the  improved coordinate   vectors  are no t   ca l cu la t ed   d i r ec t ly  

from (C.6.8) ,   but   are   obtained from the  solut ion  of   the  s imultaneous 

equations 

(C.6.10) 

where [C]  = [ G I  [VI. 

The in i t i a l   cho ice   o f   t he   coo rd ina te   vec to r s  [ Z ]  can  be made i n  

two ways: 

(1) the  coordinates  are  chosen by the   user  and punched on da ta  

cards   in   the  order   of   the   equat ion numbers, o r  

( 2 )  the   coordinates   are   ass igned by the  computer by means of a 

random number genera tor   in   subrout ine  INPUTZ. 
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These coordinate   vectors   are   used  only  to  s ta r t  t h e   i t e r a t i v e   a n a l y s i s  

o f   t he   i n i t i a l   des ign .   In   t he   ana lys i s   o f  a l l  subsequent  designs,   the 

in i t i a l   coo rd ina te   vec to r s   a r e   t aken  as the  buckling modes of   the  pre-  

vious  design.   Since  the  buckl ing modes of two successive  designs do not 

change much, t he  number of   i t e ra t ions   requi red   for   each   buckl ing   ana lys i s  

w i l l  be small, wi th   the   poss ib le   except ion   of   the   in i t ia l   des ign .  

The geometr ic   s t i f fness   mat r ix   o f   the   s t ruc ture  [GI i s  assembled 

by the   subrout ine  ADGSTF. I t   d i f f e r s  from ADDSTF, which i s  used f o r  

the  assembly of t h e   e l a s t i c   s t i f f n e s s   m a t r i x  [ K ] ,  i n  minor de ta i l s   on ly .  

There i s  no  need t o  recompute [ K ]  fo r   the   buckl ing   ana lys i s ,   s ince  it i s  

already  avai-lable from aux i l i a ry   s to rage  where it was placed  during 

ana lys i s  o f  the   p rebuckl ing   s ta te .  The simultaneous  equations  (C.6.10) 

are   solved by t h e  same subrout ine   tha t  was employed for   the   equi l ibr ium 

equat ions  of   the   prebuckl ing  s ta te ,  namely USOL. A flow  diagram  of 

the  buckling  analysis  algorithm  appears  in  Fig.   C.6.1.  
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Figure  C.6.1 

Flow Diagram f o r  Buckling Analysis. 
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C . 7  Cutoff  CPiteria  and  Restart  Option 

The design  process  is  terminated  whenever  one of the  following  cutoff 

criteria  are  satisfied: 

1) The  number of design  cycles  equals  a  prescribed  number  NCYCL. 

A redesign  cycle  is  defined  as  an  application of the  redesign  equations; 

uniform  scaling  operation, if  used,  does  not  count  as  a  redesign  cycle. 

This  feature  enables  the  user'  to  evaluate  the  progress  of  the  design 

procedure  after  a  few  design  cycles  and  take  corrective  action  if  neces- 

sary  (particularly,  adjust  the  relaxation  parameter a). 

2)  The  number of successive  uniform  scaling  operations  equals  a 

prescribed  number  NSCALE.  Program  termination  here  indicates  that  uni- 

form  scaling  is  an  ineffective  operation  and  should  not  be  used. 

3) The  structural  weight of critical  design  begins  to  increase,  i.e., 

(C.7 .1)  

where  the  terms  are  defined  in  (B.5.9). 

4 )  The  design  is  acceptable,  i.e.,  convergence  is  complete. An 

acceptable  design  satisfies  one of the  following  optimality  conditions: 

(i) The  design  is  fully  stressed  and  the buckling con- 

straints  are  not  violated,  i.e., 

where Rmax, and aax are  the  stress  and  buckling 
ratios  defined  in  (B.2.6)  and  (B.3.27),  respectively,  and 

6 is a prescribed  (small)  constant. 

Rmin 
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( i i )  me design i s  buckl ing-cr i t ica l ,   the   op t imal i ty  

c r i t e r i o n  is s a t i s f i e d  for the  buckling  constraints,  

and stress cons t ra iq ts  are not   v io la ted ,  i .e . ,  

1 - s g a x  - < 1 + s; 

1 Ract 1 - 5 6 < -  'rPr,m - < 1 + 56 f o r  a l l  ac t ive  Dm, 
- 'm r=l 

(C.7.3) 

and Rmax - < 1 + 6  . 

A t  the   user ' s   op t ion ,  DESAP 2 will produce a restart deck j u s t   p r i o r  

to   the  terminat ion of t he  program. The restart deck contains   the l as t  

values   of   the   design  var iables   together   with  their  minimum allowable 

values.  I t  can  be  used to   r ep lace   t he   o r ig ina l   des ign   va r i ab le   da t a  

input deck i f  the  user   decides   to   resubmit   the  program  and use  the l as t  

design as the   s t a r t i ng   po in t .  
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D .  DESCRIPTION OF INPUT DATA 

D .  1 General  Input Data 

I .  Heading  Card (20A4) 

80 
. .  . ~ 

- 1:- - . HED 

HED = Any alphameric   s ta tement   that  is  t o  appear as t h e  first l i n e  
of   ou tput .  

11. Program Control " Card  (415) 

1 6 11 16 20 

P NUMDV LL NELTYP 

NLJMNP = Number o f   noda l   po in t s   i n   t he   s t ruc tu re .   Inc lude   spec ia l  
nodes  used  for  beam elements  (slave  nodes  and  points  used  to 
de f ine   p r inc ipa l   axes )  and  boundary  elements  (points  used t o  
de f ine   d i r ec t ions   o f   t he   e l emen t s ) .  

NELTYP = Number o f   d i f f e ren t   e l emen t   t ypes   u sed   i n   t he   s t ruc tu re .  Count 
each  construct ion code of  an  element  as a separate   e lement   type.  

LL = Number o f   s epa ra t e   l oad ing   cond i t ions   fo r  which t h e   s t r u c t u r e  
is  to   be   des igned .  Note t h a t   o n l y  one of  these  loading  con- 
d i t i o n s  may be   sub jec t ed   t o   buck l ing   cons t r a in t s .  

NUMDV = Number of independen t   des ign   va r i ab le s   i n   t he   s t ruc tu re .  

111. Design  Control  Card  (315,  2F10.0,  315) 

1 6 11 16 26  36 41 46 50 

NCYCL LBUCK KPRIN? KPUNCH DELTA EPSIL KSCALE  NSCALE 

NCYCL = Maximum allowable number of   redesign  cycles   (see  Sec.   C.7) .  If 
NCYCL = 0,  a n a l y s i s   o f   i n i t i a l   d e s i g n   o n l y  w i l l  be   ca r r i ed  o u t .  

NSCALE = Maximum allowable number of   success ive   sca l ing   opera t ions   ( see  
Sec.  C.7). If blank,  computer  sets NSCALE = 3 .  
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KSCALE = Code fo r   un i fo rm  sca l ing   ope ra t ion .  
KSCALE < 0: omit   uniform  scal ing  operat ion.  
KSCALE = 0: carry out   uniform  scal ing  whenever   the  design is  
n o t  c r i t i ca l ,  and   ana lyse   t he   s ca l ed   s t ruc tu re .  Used when 
s c a l i n g  i s  not   exact   (see  Sec.  B.5). 
KSCALE = n > 0,  where n i s  the  exponent  of A i  i n  [ K i ]  = [ k i ] A i .  n 

Uniform s c a l i n g  will be   car r ied   ou t   whenever   the   des ign  is  n o t  
c r i t i ca l ,  b u t   a n a l y s i s   o f   t h e   s c a l e d   s t r u c t u r e  w i l l  be  skipped. 
To be  used  only when s c a l i n g  i s  exact  (see Sec.  B.5). 

DELTA = The small parameter 6 t h a t   s p e c i f i e s   t h e   l a t i t u d e   o f   t h e   c u t - o f f  
c r i te r ia  l i s t ed   i n   Sec .   C .7 .  If blank,  computer sets DELTA=0.05. 

EPSIL = The small  parameter E t ha t   spec i f i e s   t he   a l lowab le   we igh t   i n -  
crease o f   t he   s t ruc tu re   i n   t he   we igh t - cu to f f   c r i t e r ion   i n   Sec .   C .7 .  
If blank,  computer sets EPSIL = 0.1. 

KPUNCH = Code f o r   r e s t a r t   c a r d   d e c k .  
KPUNCH # 0:  punch d e s i g n   v a r i a b l e   d a t a   c a r d s   f o r   t h e   l a s t  
design  before  program  termination  occurs (see Sec.  C.7). 
KPUNCH = 0: omit  punching. 

KPRINT = Code fo r   p r in tou t   o f   noda l   d i sp l acemen t s ,   i nc l .   buck l ing  modes. 
KPRINT # 0:  pr in t   nodal   d i sp lacements   a f te r   each   ana lys i s   o f  
t h e   s t r u c t u r e .  
KPRINT = 0: omit   pr intout   of   nodal   displacements .  

LBUCK = Code f o r   c o n s t r a i n t s  on buckling  loads.  
LBUCK = 0 :  no b u c k l i n g   c o n s t r a i n t s   e x i s t .  
LBUCK = n > 0:  t he   n th   l oad   cond i t ion  i s  s u b j e c t e d   t o   c o n s t r a i n t s  
on the   buckl ing   loads .  

IV. Nodal Point  Data  (715,  3F10.0,  15, F1O.O) 

One card   for   each   node;   cards  do n o t  have t o   b e  i n  node number sequence, 
b u t   t h e  last  c a r d   i n   t h e  deck  must  be f o r   t h e   l a s t   n o d e .  

- ~ -  

N = Node number. 

I D  = Motion  code for  nodal  displacements  (ux,  uy,   uz) and r o t a t i o n s  

ex’ y y  z 8 8 ) with   respec t   to   the   g loba l   coord ina te   axes .  

ID ( i )  = 0: motion is  permi t ted .  
ID(i)  = 1: motion i s  not   permit ted  ( the  corresponding  degrees  
of  freedom are e l imina ted) .  
ID(i)  = m y  m > 1: node N is  connected t o  a master  node m. 
(used  for  beam elements  only---see Ch. E ) .  

X ,Y , Z = Global   coordinates   of   the   node.  



KN = Node  number  increment  used  in  automatic  generation of nodal 
points (see  below). 
KN = 0 :  automatic  generation is not  used. 
KN > 0 :  use  automatic  generation, 

T = Nodal  point  temperature. 
Note:  temperature  distribution  in  the  structure  is  prescribed 
by  nodal  temperatures. The reference  temperature  (i.e.  temper- 
ature of the  stress-free  state) is specified on the  element  cards. 

Automatic node  generation---if a  series of nodes  exists  that  satisfies 
the  following  requirements: 

(a) the  nodes  are  equally  spaced  along  a  straight  line; 
(b) the  temperature  distribution  along  the  line of nodes  is  linear; 
(c) the  motion  codes  for  all  the  nodes  are  identical; 
(d) the  node  numbers  form  the  sequence n, n+KN, n+2*KN, ..., 

then  only  cards  for  the  first  and  last node  of  the series  are  required. 
The  data  for  the  intermediate  nodes  will  be  generated  automaticallv.  The 
motion  code  for  the  series  will  be  taken fro; the  first  card,  the  Lode 
increment KN from  the  last  card of the  series. 

" 

" 

Automatic  motion  code generation---if a  particular  degree of freedom  is 
to  be  eliminated  from  a  series of nodes,  this  can  be  achieved  by  using 
-1 as  the  motion  code  on  the  first  card,  and 1 on the  last  card of the 
series.  The  computer  will  automatically  use  1  as  the  motion  code  for 
the  first  and  all  intermediate  node  cards of the  series. 

V. Element Data 

This  data  differs  for  various  element  types  and  construction  codes;  it  is 
described  from  Ch.  E  onwards. 

VI. Structural  Load  Multipliers  (4F10.0) 

One card for  each  separate  load  condition;  the  cards  must  be  in  ascending 
order of load  condition  numbers. 

1  11  21  31 40 

I I 

STR(1) = Fraction of element  load  A  which  is  to  be  added  to  the  load 
condition  (structural  load  multiplier  for  element  load A) .  

STR(2) = Structural  load  multiplier  for  element  load B. 
STR(3) = Structural  load  multiplier  for  element  load C. 
STR(4) = Structural  load  multiplier  for  element  load D. 
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Element loads A, B, C and D are defined  with  description  of  element 
da ta  (Ch. E onwards). The element  loads  represent  thermal and gravi ty  
loading  or  distributed  loads  of  prescribed  magnitude. The s t r u c t u r a l  
load  mult ipl iers   enable   the  user   to  choose any fraction  of  the  element 
loads f o r  any load  condition. 

VII. Buckling  Control Card (F10.0, 415,  2F10.0) 

This  card i s  t o  be  omitted i f  no  buckling  constraints  are imposed 
(LBUCK = 0 ) .  

1 11 16 2 1  26 31 4 1  50 

COEFFT OMEGA ALPA NVEC INDET NMODE MODEIN 

COEFFT = 

MODEIN = 

NMODE = 

INDET = 

The constraint  p* on the   c r i t i ca l   load   parameters ,   def ined   in  
eqs.  (B.3.1) and (B.3.2). I t   r ep resen t s   t he   des i r ed   f ac to r   o f  
safety  against   general   buckl ing  for   the  prescr ibed  loading.   I f  
blank, computer s e t s  COEFFT = 1 .0 .  

Code for   genera t ion   of   the   in i t ia l   coord ina te   vec tors  (mode 
shapes) { z  Cr) )---see  Sec.  C.6.1. 
MODEIN = 0:  coord ina te   vec tors   a re   to  be  generated by the  
computer as random numbers. 
MODEIN = 1: coordinate   vectors   are   read  in   with  input   data .  

Number of  buckling modes  on which the  buckl ing  constraint  i s  t o  
be  imposed. 
NMODE = 1: the  optimal  design i s  expected  to  be determined 
by a s ing le  (fundamental)  buckling mode. 
NMODE = 2 :  the  optimal  design i s  expected  to  be  determined by 
two buckling modes simultaneously  ( i .e. ,   the  lowest two buckling 
loads are expected to   coa lesce) .   I f   b lank ,  computer s e t s  
NMODE = 1; i f  NMODE z 2 ,  computer s e t s  NMODE = 2 .  

Note: The use  of NMODE = 1 i s  recommended f o r   t h e  f irst  run, 
s ince  it works f o r  a vast  majority  of  problems and requires  
somewhat l e s s  computer  time  than NMODE = 2 .  

Code f o r  s ta t ic  determinacy  of  the  prebuckling  state. 
INDET = 0: the   in te rna l   forces   a re   s ta t ica l ly   inde termina te  
pr ior   to   buckl ing .  
INDET = 1: the   in te rna l   forces   a re   s ta t ica l ly   de te rmina te  
pr ior   to   buckl ing.  

Note: the code appl ies   only  to   the  load  condi t ion  that  i s  
subjected  to   the  buckl ing  constraints .  If INDET = 1, the 
geometr ic   s t i f fness   matr ix   of   the   s t ructure  is  assembled  only 
once; if INDET = 0,  the  matrix is  reassembled  prior  to  each 
buckling  analysis---see  Sec. B. 3.9.  
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NVEC = Number of  coordinate  vectors {z (r) 1 used i n   t h e   i t e r a t i v e  
buckling  analysis.  If NVEC < NMODE o r  NVEC > 2 ,  computer 
s e t s  NVEC = 2.  

Note: t he  number of  coordinate  vectors  used must equal a t  
least the  number of  eigenvalues (NMODE) t o  be  extracted.  
I t  is  advisable,  however, t o   u se  NVEC = 2 (the maximum allowable 
value) i n  a l l  cases (even i f  NMODE = 1 ) ,   s i n c e   t h i s   r e s u l t s   i n  
faster convergence. 

ALPA = The re laxa t ion   fac tor  a < 1 used in   the  buckl ing-constrained 
redesign  formula (B. 3.13). 

Note: the  chances that  the  i terative  design  procedure con- 
verges  uniformly  increase  with  increasing  values  of ALPA. 
Consequently, it i s  be t t e r   t o   u se  an ALPA t h a t  i s  too  large 
(resul t ing  in   under-relaxat ion) ,   than one t h a t  i s  too small 
(over-relaxation).  Large values  of ALPA, however, may require  
a larger number of   des ign   i t e ra t ions   before   the   cu tof f   c r i te r ia  
are   act ivated.  In o rde r   t o  minimize  computer time, it i s  ad- 
v i s a b l e   t o   s t a r t   w i t h  a "normal" value, which can  be  estimated 
from [3]  a = n / ( n + l ) ,  where n is  t h e   i n e r t i a  exponent t h a t  
dominates the   s t ruc tu ra l   s t i f fnes s   ma t r ix .  After a few re-  
design  cycles ALPA may be increased  or  decreased, depending 
on the  convergence charac te r i s t ics   o f   the  problem. 

OMEGA = The comparison parameter w < 1 used in   s e l ec t ing   t he   po ten t i a l ly  
active  buckling  constraints  (see  Sec.  B.4). I f   b lank,  computer 
s e t s  OMEGA = 0.8 .  

VIII. Nodal  Load Data  (215,  6F10.4) 
~" 

One card  per  load  condition  for  each node that  carries  concentrated  loads 
o r  moments. Cards must be arranged i n  an ascending  order  of node 
numbers. The data  must end with a blank  card.  If no nodal  loads  are 
present,  use  the  blank  card  only. 

" 

1- . . . 6- -. . .. 11 2 1  31 41 51 61 70 

I_, R(6) 

N = Node number. 

L = Load condition number. 
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R = Concentrated  forces  (Rx,R , R  ) and moments ( M x y M  M ) i n   t h e  
Y Z  Y '  z 

global   coord ina te   d i rec t ions .   Pos i t ive   va lues   denote   loads  
i n   t h e   p o s i t i v e   c o o r d i n a t e   d i r e c t i o n s ,   n e g a t i v e   v a l u e s   i n   t h e  
nega t ive   coord ina te   d i rec t ions   ( see   F ig .   D. l .1 ) .  

Note:   the   r ight-hand screw 
r u l e  is used to   de te rmine  
p o s i t i v e   d i r e c t i o n s   f o r   t h e  
moments, as shown i n   F i g .  D . l . l .  
The same s ign  convent ion 
is  employed f o r   n o d a l   d i s -  
placements   and  rotat ions  in   the 
p r i n t o u t  of t h e   a n a l y s i s .  

Fig.  D . l . l  

Pos i t i ve   D i rec t ions  of 
Nodal Forces  and Moments. 

IX. Ini t ia l   Coordinate   Vectors   (8F10.5)  

One se t   o f   cards   for   each   coord ina te   vec tor  { z  (r) 1 used in   buck l ing  
a n a l y s i s .  The  number o f   vec to r s  must equal NVEC s p e c i f i e d  on t h e  
Buckling  Control  Card. The components of   each  coordinate   vector   are  
t o   b e  Tead i n  by   b locks   in   the   o rder   o f   the i r   equa t ion  numbers? If 
t h e   i n i t i a l   c o o r d i n a t e   v e c t o r s  are to   be   genera ted  by t h e  computer 
( spec i f ied   by  MODEIN = 0 on the  Buckling  Control  Card) , omit a l l   c a r d s .  

X .  Design  Variable Data 

One card   for   each   des ign   var iab le ;   cards  must be   in   ascending   order   o f  
des ign   var iab le  numbers. 

1 6 16 25 

N AMIN AOLD 

N = Design  var iable  number. 

*Note t h a t   p r i o r  knowledge of   the   equat ion  numbers  and t h e  number of  
equat ions  in   each  block are required.   This   information i s  a v a i l a b l e  
only af ter  t h e  first run  of  the  problem  has  been  completed. 

- 
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AOLD = I n i t i a l   v a l u e  of design  variable.  If AOLD < AMIN, computer 
sets AOLD = AMIN. 

AMIN = Minimum allowable  value of design  variable.  

Automatic data   generat ion--- i f   there   exis ts  a sequence  of  design  variables 
N = n ,   n+ l ,  n+2, ... t h a t  have identical   values  of AOLD and AMIN, it is  
suf f ic ien t   to   inc lude   on ly   the  last  card  of  sequence ip the  deck. The 
omitted  data w i l l  be  generated  automatically. 

" 



E . l . l  

E .  BAR ELEMENT 

E . l  General  Information 

Fig.  E . l . l  

Typical Bar Element. 

A t yp ica l   ba r   e l emen t  i s  

shown i n   F i g .  E . l . l .  The 

element   coordinate   axes  7 and 

co inc ide   w i th   t he   p r inc ipa l  

axes of t h e   c r o s s   s e c t i o n ,  

whereas x i s  t h e   c e n t r o i d a l  

axis. 

The displacements are 

assumed t o   b e   l i n e a r   i n  2; 

consequent ly ,   the   ax ia l   force  

P will be  constant  throughout 

t he   l eng th  of the   e lement .  

Since  bar  elements do no t   ca r ry   bend ing   o r   t o r s ion ,   t he   noda l   ro t z -  

t i o n s  must be  suppressed on t h e  Nodal Po in t   Da ta   ca rds ,   u t i l i z ing  t h e  

motion  code  ID(6)---see  Sec. D . l .  For   the  same reason,  only zero  con- 

c e n t r a t e d  moments a re   permi t ted  on t h e  Nodal Load Data  cards.  

The bas ic   e lement   loads   cons is t  o f  g r a v i t y   l o a d i n g   ( i n   t h e   t h r e e  

g loba l   coo rd ina te   d i r ec r ions ) ,  and tempera ture   increase .  The temperature 

i n c r e a s e  o f  an  element i s  assumed to   be   un i form,  and i s  c a l c u l a t e d  from 

AT = 1/2(Ti+T.) - 
3 Tref ' (E . l .1 )  

where T and T a r e   t h e  nod&.! temp2ratures  (see Nodal Point  Data]  and 

Tref 

ment 19ad  vectw-  due  to   gravi ty  i s  obtained by a s s ign ing   ha l f   t he  

g r a v i t a t i o n a l   f o r c e   a c t i n g  on the  element t o  each  node. 

i j 
i s  the   r e f e rence   t empera tu re   spec i f i ed  OT! the   e lement   cards .  The e1e- 
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The  program  can  handle  temperature-dependent  material  properties, 

in whi.ch case  the  properties  should  be  listed  for  two  or  more  tempera- 

tures.  The  lowest  and  highest of these  temperatures  must  cover  the  range of 

temperatures  listed  on  Nodal  Point  Data  cards. The material  properties 

of each  element  are  then  obtained  from  the  listing  by  linear  interpolation. 

The  output  from  the  analysis  will  consist of the  axial  force P for 

each  element  and  each  load  condition. 

The element data deck for each  construction  code  used  must  start 

with : 

IV A. Element  Control  Card (615) 

1 6 11 16 21 26 30 

I( NPAR (6) -4 

NPAR(1) = Code  for  element  type (MTYPE).  For bar  elements  use NPAR(1) = 1. 

NPAR(2) = Number of bar  elements  with  the  specified  construction  code (NUME). 

NPAR(3) = Number o f  different  materials  used  for  the  specified  construction 
code (NUNMAT). 

NPAR(4) = Number  of  different  geometric  (cross-sectional)  properties  used 
for  the  specified  construction  code  (NUMGEO). 

NPAR(5) = Construction  code (KODE). 

NPAR(6) = Maximum number of temperatures for which  material  properties  are 
given  (NUMTC) . If blank , computer  sets NPAR(6) = 1 . 

The  remaining  element  data  depends  on  the  construction  code used, and is 
described  separately  below. 
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E . 2  Construction  Code No. 1 

This  construction  code  is  designed  mainly f o r  thin-walled  bars 

where  the  wall  thickness  only  is  to  be  changed  during  the  optimization 

process.  The  size o f  the  element,  namely  the  cross-sectional  area A, 

is then  related  to  the  moments of  inertia by 

I- Z = jZA a ( E . 2 . 1 )  

where j- and j- are  the  unit  moments o f  inertia. 
Y z 

If P is  positive  (tensile), the  element  is  redesigned  with  respect 

to  the  allowable  tensile  stress  only.  The  stress  ratio  redesign  formula 

(B .  2 . 3 )  then  becomes 

A'/A = P/P,X , ( E . 2 . 2 )  

where  A'  is  the  improved  area  and P; = a*A, a* being  the  tensile  strength. t  t 
For  negative  (cpmpressive)  values of P, Johnson's  parabolic  formula, 

[Sec. C1, Ref. 8 ] shown  in Fig; E. 2.1, is  used as the  failure  criterion. 

For slender  bars,  failure  is  governed by Euler  buckling, in which  case 

the  stress  ratio  redesign  formula  is 

A ' / A  = -P/Pcr , (E.2.3) 

where P = 0 A is the  Euler  buckling  lbad of  the  current  design.  For cr . cr 
short  bars,  the  allowable  stress  is  given by Johnsogs  parabola;  the 

- 
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U 
f 

U* 
C 

o* 
Johnson ' s   parabola :  = ~*fl-&--c-) 

I c - 4u . cr  

""" "" - "" k r  curve:  u - 

f -  

I 
\ '. c 

I Short  
* L / r  

'cr 

of = f a i l u r e  stress 
L = l eng th  of element 

r = r a d i u s  of gy ra t ion   o f   t he   c ros s   s ec t ion  

u* = compress ive   s t rength   (y ie ld  stress o r   c r i p p l i n g   s t r e s s )  

0 = CIT E/(L/r)2 = Euler  buckling stress 

E = Young ' s  modulus 

C = e n d - f i x i t y   c o e f f i c i e n t   f o r   b u c k l i n g  

C 2 
c r  

Figure E .  2 . 1  

Johnson's  Parabolic  Formula 

r e s u l t i n g  stress ra t io   formula   can   be  shown t o   b e  

"cr 
A ' / A  = - PC (Pc*r-Pc*/41 (E.2.4) 

where P* = u*A and P = (5 A. The r a t i o  A ' / A  i s  computed  about  both 

pr inc ipa l   axes   o f   bending ,   and   the   l a rger  of t h e   v a l u e s  i s  chosen as t h e  

stress r a t i o  of the   e lement .  

C C cr cr  

The elements may be   guarded   aga ins t   to rs iona l   buckl ing   (appl icable  

t o  open   s ec t ions ) ,   o r   l oca l   buck l ing  of t h e  wall by choos ing   appropr ia te  

minimum s i z e  c o n s t r a i n t s .  
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VI B. Material  Properties - Data 

A separate  data  deck , described  below,  is  required  for  each 
material.  The  decks  do  not  have to be  in  a  numerical  sequence of 
material  numbers. 

Material  Control - Card  (215 , F1O.O) 

1 6 11 20 

N = Material  number. 

NTC = Number of temperatures  for  which  the  properties of this  material 
are  given. If blank,  computer  sets  NTC = 1. 

w? = Weight-density of the  material. 

Material  Properties  Cards  (5F10.0) 

One  card  for  each  temperature  for  which  the  properties of this  material 
are  given.  Cards  must  be  in  ascending  order of temperatures. 

1 11  21 31 41 50 

PblAT(1) = Temperature for which  the  properties  are  given (T). 

PhlAT(2) = Young’s modulus of elasticity (E). 

PklAT(3) = Coefficient of linear  thermal  expansion (a). 

PMAT(4) = Tensile  strength (a;). 

PblAT(5) = Compressive  strength (a*). If blank,  computer  sets PMAT(S)=PMAT(4). 

VI  C.  Geometric  Properties Data (15, SX, 3F10.0) 
C 

One  card for each  geometric  property;  cards do  not  have  to  be  in 
numerical  order. 

1 6 11  21 31 40 
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N = Geometric property number. 

AREA = Cross-sectional  area or' reference  section  (see  below). If 
blank,  computer sets AREA = 1.0.  

PGEO(1) = Moment of i n e r t i a  of  the  reference  section  about y-axis (I-). 
If blank, computer s e t s  PGEO(1) = 10.0  **6,  thus  eli-  
minating  Euler  buckling  as a design  consideration. 

PGEO(2) = Moment of i n e r t i a  of the  reference  section  about z-axis ( I - ) .  
If  blank, computer sets PGEO(2) = 10.0**6., e l iminat ing 
Euler  buckling. 

z 

The Geometric Propert ies  Data is  used solely  for   the  computat ion of 
t h e   u n i t  moments o f   i n e r t i a  j -  and j - .  Therefore,   the  reference  section 
does not have to   co inc ide  w i t K  t he   i g i t i a l   des ign ,   bu t  can represent  any 
acceptable  intermediate  design. The un i t  moments of   iner t ia   could ,  of 
course,  be  read i n   d i r e c t l y  by s e t t i n g  AREA = 1 . 0  (or   blank) ,   in  which 
case PGEO would be in te rpre ted  as- t h e   u n i t   i n e r t i a s .  

V I  D .  Element Load Mult ipl iers  (4F10.0) 

Four cards as shown below: 

" 

31 40 

Card 1: x-gravi ty  

Card 2 :  y-gravity 

Cprd 3 :  z-gravity 

Card 4 :  thermal  loading 

L BIuL(4,4) _I 
EMUL = Fractions  of  the  basic  element  loads  (gravity  loading  in  the 

three  global   coordinate   direct ions and thermal  loading) which 
a r e   t o  be  included  in  the  element  loads A,  B, C and D. 

Element Load Multipliers  simply  define  the  element  loads A,  B,  C and D. 
Various  multiples  of  these  element  loads  can be  added t o  each s t r u c t u r a l  
load  condition by the  use  of   the   Structural  Load Multipliers  (see  Sec.   D.l) .  
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VI E.. Element Data (615, 4F10.0, 15) 

One card f o r  each element; cards must be arranged in an ascending 
order o f  element  numbers. 

1 6 11 16 21 26 31 41 51 61 71 75 

I1 I JJ 1M.A.T I 
IEL = Element number. 

I1 = Number of node i (see Fig. E. 1.1). 

JJ = Number of  node j , 

IFWT = Material number of element. 

IGEO = Geometric property number of element. 

I  DV = Design variable number of element. 

FRC = The design variable fraction in  eqn. ( B . l . 2 ) .  If blank, 
computer sets FRC = 1.0. i 

REFT = Reference temperature---see Nodal Point Data  in Sec. D.l. 

ELPYY = The end-fixity  coefficient  C  for  buckling about y-axis--- 
see Fig.  E.1.2. 

ELPZZ = The end-fixity  coefficient  C for buckling about z-axis. 

I NC = Node number increment  in autcmatic generation of element 
data (see  below). If blank, computer sets INC = 1. 

Automatic  element data generation---if there exists a series of elements 
IEL = m,  m+l, m+2, ..., which satisfies the following requirements: 

(a) The node numbers form the sequences 
I1 = i, i+INC, i+2x  INC,. , . 
JJ = j, j+INC, i+?*INC,. . .; 

(b) The rest of the data is identical for all elements of the series, 
then only the last  card of the series will  be required. The element data 
for the other elements in the series will  be generated automatically. 
" 
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E .3  Construction  Code No. 2 

This construction  code  assumes  that  ali  the  cross-sectional  dimen- 

sions  are  changed  by  the  same  proportion upon redesign.  Consequently, 

(E.2.1)  is replaced  by 

(Ei3.1) 

This  scheme  allows  the  user  to  choose  the  optimal  proportions of the 

, cross  section  (usually  determined by local  buckling  considerations, 

such  as  crippling  stress or torsional  buckling),  and  assures  him  that 

these  proportions  are  not  changed  upon  redesign. 

If P is tensile,  (E.2  -2)  remains  valid  as  the  redesign  formula. 

For  compression,  the  quadratic  size-inertia  relationships  result  in  the 

following  modifications to (E .2 .3 )  and  (E.2.4),  respectively: 

A ' / A  = (-P/Pcr) 1/2 s (E. 3 . 2 )  

( E . 3 . 3 )  

The  input  data and  the remainder o f  the  redesign  procedure  are 

identical  to  those  used  in  construction  code No. 1. 



F. BEAM ELEMENT 

F . l  General Information 

R- 
X 

F . l . l  

Figure F .  1.1 

Typical Beam Element Showing Direc t ions  
of  Posit ive  End-Forces and Moments. 

The element  coordinate  axes 7 and i shown i n   F i g .  F. 1.1, are t h e  

p r inc ipa l   axes  of t h e   c r o s s   s e c t i o n .  The d i r e c t i o n  o f  the   y -ax is  i s  

def ined by the   p lane   o f  i - j - k ,  where k i s  a “ t h i r d t t   n o d a l   p o i n t   t h a t  

must be spec i f i ed   i n   add i t ion   t o   t he   nodes  i and j .  The node k may be 

a convent ional   nodal   point  o f  t h e   s t r u c t u r e ,   o r  a p o i n t   u s e d   s o l e l y   f o r  

de f in ing   t he   p r inc ipa l   axes .   In   t he   l a t t e r   ca se ,   t he   mo t ion   code  on 

t h e  node da ta   ca rd   shou ld   be   u sed   t o   e l imina te   a l l   deg rees  of freedom 

f o r  node k .  

Cubic  polynomials  in x are   used  f o r  t h e   l a t e r a l   d i s p l a c e m e n t s ,  

whereas  the  axial   displacement i s  assumed t o  b e   l i n e a r  as i n   t h e   b a r  

e l e m m t .  The bending moments a r e   t h u s   c o n f i n e d   t o   l i n e a r   f u n c t i o n s  
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of 2.  It  follows  that the  finite  element  analysis  of  beam  elements  is 

exact  (apart  from numerical errors) for  elements  that  carry  concentrated 

nodal  forces or moments  only. 

The  basic  element  loads  are  gravity  loads  in  the  three  global co- 

ordinate  directions,  and  fixed-end  forces  referred  to  the  element  coordinate 

directions.  Neither  thermal  stresses nor temperature-dependent  material 

properties  are  included  in  the  current  version of the  program. 

Distributed  lateral  loads  are  specified  in  the  form of fixed-end 

forces and  moments. A fixed-end  force  (or  moment)  is  simply  the  end 

force (or  moment)  acting  in a  clamped-clamped  beam  subjected t o  the 

specified  lateral  loading. A n  example  on  the use of fixed-end  forces 

is shown in  Fig.  1.2. 

Figure  F.1.2 

Example  on  the  Use of Fixed-End  Forces. 
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The  use of fixed-end  forces  results  in  the  correct  end-forces 

(and  moments) in  a beam  element,  but  the  distribution of the  internal 

forces (and  moments) is .generally  inaccurate  between  the  ends. 

Any degree of freedom of  an  end-node (such  as i  or j) can be 

connected  to  the  degrees-of-freedom of  a "master" node m. If  such  a 

connection  is  present,  the  number of  the  master  node  should  be  used  as 

the  motion  code for the  "slave"  node  (see  Nodal  Point Data  in Sec. D.l). 

Note  that  this  scheme  precludes  using  node  number 1 for  the  master  node. 

If the  x-displacement  of  node i is  specified  as a  slave  of  node m y  

the  displacement  is  expressed  in  .terms of the  degrees-of-freedom of the 

master  node  as  follows: 

u = u + (Zi-zm)ep - xi  xm (F.l.1) 

The  corresponding  formulas  for  the y and z-displacements  can be  obtained 

from  (F.l.1)  by  cyclic  perrmtation of x,y,z. 

If the  rotation  about x-axis  of  node i is  specified  to  be  the  slave 

degree-of-freedom, the  computer  sets 

'xi xm = e  (F. 1.2) 

halagous equations  are  used for  slave  rotations  about  the  y  and  z-axis. 

Slave-master  relationship  is  used  to  represent  various  rigid 

connections  between  two  nodes.  The  edge-reinforced  plate  in  Fig.  F.1.3 

can be  offered  as  an  example.  By  specifying  all  the degrees-of-freedom 

of node j to  be  the  slaves  of  node my a rigid  link  is  created  between 

the  two  nodes.  The  link  enforces displacment continuity  between  the 
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Plate elements 
m 

~~~ ~ 

1 :":-:": 
""- " 4 t " Rigid l i n k  

Beam element 

Figure F . 1 . 3  

Example of  Master and Slave Nodes. 

beam and p la te   e lement ,   bu t  a t  t h e  same time it accoun t s   fo r   t he   i n t e r -  

e lement   eccentr ic i ty  e .  

I t  i s  impor t an t   t o   no te   t ha t   t he   eccen t r i c i ty  e i s  kept   constant  

throughout  the  redesign  procedure,  i .e . ,  no allowance i s  made f o r   t h e  

changes  in e caused by redesign.  

The pr inted  output   fol lowing  each  analysis   consis ts   of   the   end-  

forces  and moments  shown i n   F i g .  F .  1.1. 

The f irst  card  of  the  element  data  deck  for  each  construction  code 

used must be: 

VI A. Element  Control  Card  (615) 

1 6 11 16  21  26 30 

NPAR(1) = Code f o r  element  type ("TYPE). For beam elements  use NPAR(1) = 2.  

NPAR(2) = Number of elements  with  the  specified  construction  code (NUME). 
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NPAR(3) = Nuvber  of  different  materials  used  for  the  specified  con- 
struction  code  (NUMMAT) . 

NPAR(4) = Number of different  geometric (cross-sectiona1)properties 
used for the  specified  construction  code (NUMGEO). 

NPAR(5) = Construction  code (KODE). 

NPAR(6) = Number  of  different  fixed-end  force  sets  used  for  the  specified 
construction  code (NLJMFX). 

The rest of the  element  data  is  dependent  on  the  specified constructim 
code, and  is  listed  separately  below. 
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F. 2 Construct ion Code No. 1 

The s i z e  A of   the   e lement  i s  taken as t h e   c r o s s - s e c t i o n a l  area, and 

t h e   s i z e - s t i f f n e s s   r e l a t i o n s h i p s  are assumed t o   b e   l i n e a r :  

1- = ' j,A, I- = j - A ,  1; = j Z A  , 
X Y Y  

(F.2.1) 

where I -  i s  t h e   t o r s i o n a l   c o n s t a n t   o f   t h e   c r o s s   s e c t i o n ,  I- and I- 
X Y z 

are t h e   p r i n c i p a l  moments o f   i n e r t i a ,  and j;, j -  j;  are t h e   s i z e -  

independent   un i t   va lues .  
Y '  

This   cons t ruc t ion   code  i s  i n t e n d e d   p r i m a r i l y   f o r   t h e   u s e   o f   t h i n -  

wal led   sec t ions   where   the  wall th ickness   on ly  i s  to   be   va r i ed   du r ing  

design.   Equat ions  (F.2.1)   represent  a good approximat ion   for   c losed  

s e c t i o n s ,   p r o v i d e d   t h a t  the wall th i ckness  i s  not   too  large.   For   open 

s e c t i o n s ,   t h e   e x p r e s s i o n s   f o r  I- and I- are s t i l l  v a l i d ,   b u t   t h e  
Y Z 

t o r s iona l   cons t an t   has   t he   fo rm I-  = j - A  . I t  must  be  noted,  however, 

t h a t  I -  i s  very small i n  comparison t o   I -  and I -  for .   th in-wal led ,  

open   sec t ions .   Therefore ,  i t s  c o n t r i b u t i o n   t o   t h e   r i g i d i t y   o f   t h e  

s t ruc tu re   can   be   neg lec t ed   i n   mos t  cases, i . e .  j -  = 0 may be  used. 

5 

X X 

x Y 2 

X 

The cons t ruc t ion   code  is  a l s o   v a l i d   f o r   p l a n e   b e n d i n g   o f  beams 

wi th   r ec t angu la r   c ros s   s ec t ions   where   t he   w id th   o f   t he   c ros s   s ec t ion  

i s  s u b j e c t   t o   d e s i g n .  

The stress r a t i o   r e d e s i g n   f o r m u l a  is based  on  the  allowable 

s t r e s s e s   o n l y ;   i n s t a b i l i t y  c r i t e r i a  are n o t   u s e d .   L o c a l   i n s t a b i l i t i e s  

could  be  guarded  against  by  choosing  adequate minimum s i ze  c o n s t r a i n t s .  
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.The s ' t r e s s e s   a r e   c a l c u l a t e d   a t  f o u r  p o i n t s   a t   e a c h   e n d   s e c t i o n  

of  the   e lement ,   as   ind ica ted   in   F ig .F .2 .1  by p o i n t s  A, B, A t  and B'. 

Locations o f  A and B on t h e   c r o s s   s e c t i o n  are chosen by t h e   u s e r ;  

p o i n t s  A t  and B '  a re   loca ted   by   the   computer   to   be   in   "mir ror  image" 

p o s i t i o n  of  A and B. 

A '  A T- Z 

B '  B 
1 -  

Symmetric 

KSEC = 1 

- 

B % -  Z 

A '  \ B'  

Zee 

KSEC = 2 

C i r c u l a r  

KSEC = 3 

Figure F . 2 . 1  

Allowable  Families o f  Cross Sec t ions .  
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The input i s  l imi t ed   t o   t h ree   f ami l i e s  of cross   sect ions:  

(a)  Cross  sections  with a t  l e a s t  one ax is  .of  symmetry. I t  is a l so  

adv i sab le   t o  have the   cen t ro id  and the  shear   center   coincide,  

s ince   the  program takes   the   cen ter   o f  twist to   be   t he   cen t ro id  

of   the  cross   sect ion.  The axis  of symmetry must bk specif ied 

as the  y-axis. 

(b) Zee sect ion  with  ident ical   f langes.  The y-axis must be speci-  

f ied  as   the  pr incipal   axis   that   passes   through  the  centroids  of 

the  f langes as shown in   F ig .  F . 2 . 1 .  

(c)   Circular   cross   sect ion.  The. or ientat ion  of  7 and z axes is  

completely  arbitrary;  the computer will au tomat ica l ly   ro ta te   the  

axes  such tha t   the   y -ax is  w i l l  coincide  with  direction of the  

r e su l t an t  moment M (see  Fig.  F.2.1). 

The user  must specify  the  sect ion moduli a t   p o i n t s  A and B only;  the 

computer will automatically  generate  the moduli f o r  A'  and B'  as  shown 

below. 

(a) Symmetric sec t ions  : 

(F.2.1) 

(b) Zee sections:  

(F.2.2) 
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The  normal  stresses  due  to  bending  and  axial  load  are  computed 

from  the formulas 

ug = T (M-/Z- - M2/Z2) , 
Y Y  

u = R--/A , A 

( F . 2 . 3 )  

(F.2.4) 

respectively,  where  the  minus  sign  applies  to  node i, and  the  plus  sign 

to  node j. The  shear  stress  due  to  torsion  is  obtained  from 

T = M-/Z- . x x  ( F . 2 . 5 )  

The  stress  ratio  redesign  formula  is  based on the  modified  Von  Mises 

yield  criterion 

+ (T/T*)  = 1 , 2 
( F . 2 . 6 )  

where u = u + (5 and u*, T* are  the  allowable  stresses. If u > 0, 

o* isataken  as  the  allowable  tensile  stress o*’ if o < 0, u* represents 

the  allowable  compressive  stress o*.  It should  be  noted  that ( F . 2 . 6 )  

A B’ 

t’ 

C 

reduces  to  the  original  Von lriises criterion if o* = u* and T* = a;/&. t C 

Because  only  the  wall  thickness  changes  during  design,  the 

section  moduli  .have  the  form 

Z- = Z-A , Z- = Z-A , Z- = Z - A  , 
X X Y Y  Z 

( F . 2 . 7 )  Z 

where z-, z-  and  z-  are  the size-independent  unit  section  moduli. 

Utilizing ( F . 2 . 7 )  and ( F . 2 . 3 )  to ( F . 2 . 6 )  in  the  failure  criterion ( F . 2 . 6 ) ,  
x Y’ z 

we  obtain for the  stress  ratio  redesign  formula  the  following  equation: 

(F .   2 .8)  

where CI u and T are  the  stresses of the  current  design A.  A’ B’ 
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V I  B.  Mater ia l   Proper t ies   Data  (15,  5X, 6F10.0) 

One card  for each  material   used;,   the  cards do no t   have   t o   be   i n   numer i ca l  

sequence. 

N = Material  number. 

WT = Weight-density of t h e   m a t e r i a l .  

PblAT(1) = Young’s  modulus of e l a s t i c i t y  ( E ) .  

PMAT(2) = P o i s s o n ’ s   r a t i o  ( V ) .  

p s m ~ ( 3 )  = Allowable   t ens i le  stress (0;). 

p a ~ ~ ( 4 )  = .l\llowable  compressive stress (o*). If blank,  computer sets 
PFWT(4) = PblAT(3). C 

PMAT(5) = .411owable shear  stress (T*). If blank,  computer sets 
PbIAT(5) = 0.577*PblAT(3). 

V I  C. Geometric  Properties  Data (215, 4F10.0/6F10.0) 

TWO cards   for   each  geometr ic   property;   cards  do not  have t o  b e   i n  

numerical  sequence. 

1 6 11 2 1  31  41 50 

1 11 2 1  31 41  51  60 
c 

Card 2 

I =  PGEO ( 9 )  -4 

N = Geometric  property  number. 
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KSEC = Code f o r  c ros s   s ec t ion   ( s ee   F ig .   F .2 .1 ) .  
KSEC = 1 or   blank:   symmetr ic   sect ion.  
KSEC = 2:  Zee s e c t i o n .  
KSEC = 3:  c i r c u l a r   s e c t i o n .  

AREA = Cross - sec t iona l   a r ea   o f   r e f e rence   s ec t ion .  
If blank,  computer sets AREA = 1.0 .  

PGEO(1)  = Tors iona l   cons tan t   o f   the   re fe rence   sec t ion   ( I - ) .  

PGEO(2)  = Moment o f   i n e r t i a   o f   t h e   r e f e r e n c e   s e c t i o n   a b o u t   y - a x i s   ( I - ) .  

PGEO(3)  = Moment o f   i ne r t i a   o f   t he   r e f e rence   s ec t ion   abou t   z - ax i s   ( I - ) .  

X 

Y 

I f  KSEC = 3 ( c i r cu la r   s ec t ion ) ,   compute r  sets 
PGEO (3) = PGEO (2)  . 

z 

PGEO(4)  = Sect ion  modulus of   point  A o f   t h e   r e f e r e n c e   s e c t i o n   f o r  
t o r s i o n  (2.4). 

X 

PGEO(5)  = Sect ion modulus o f   po in t  A o f   t h e   r e f e r e n c e   s e c t i o n   f o r  
bending  about  y-axis ( Z - ) .  A 

Y 
PGEO(6)  = Sect ion modulus o f   p o i n t  A of  t:le r e f e r e n c e   s e c t i o n   f o r  

bending  about  z-axis (ZA). 
Z 

PGEO(7)  = Sect ion modulus o f   po in t  B o f   t h e   r e f e r e n c e   s e c t i o n   f o r  
t o r s i o n  ( Z - ) .  B 

X 

PGEO(8)  = Sect ion modulus o f  p o i n t  B o f   t h e   r e f e r e n c e   s e c t i o n   f o r  
bending  about  y-axis ( Z - ) .  B 

Y 
PGEO(9)  = Sect ion modulus o f   po in t  B o f   t h e   r e f e r e n c e   s e c t i o n   f o r  

heading  about  z-axis ( Z - ) .  B 

Note: I f  P G E O ( i ) ,  i = 4 , 5 ,  ..., 9 a r e   l e f t   b l a n k ,   t h e  
cor responding   to rs iona l   o r   bending   s t ress  i s  s e t   t o   z e r o  
in   t he   ana lys i s .   Fo r  KSEC = 3 ( c i r c u l a r   s e c t i o n )  , stresses 
are c a l c u l a t e d   a t   p o i n t s  A and A '  only;  consequently 
PGEO(6)  t o  PGEO(9)  are set  t o   z e r o  by the  computer.  

Z 
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The Geometric Properties Data is used only for the computation of unit 
inertias and section moduli. The reference section thus does not have 
to be the initial  design. 

VI D. Element  Load Multipliers (4F10.0) 

Three cards as' shown below. 

1 11 21 31 40 
I".. ~ I B I C I D 1 Card 1:  x-.gravity 

Card 2 :  y-gravity 

Card 3 :  z-gravity 

CbWL = Fractions of basic  element  loads  (gravity  loads  in the global 
coordinate  directions)  which  are to be  included  in the element 
loads A ,  B, C and D. 

Lumped nodal forces are used  to represent gravity loads, as was done for 
Bar  Elements (see Sec. E.l). Fixed-end forces are not computed. 

The element load multipliers  define  the contribution of gravity  to element 
loads A ,  B, C and D. Additional contribution to the element  loads is 
made  by  the fixed-end forces; this information is specified separately by 
Fixed-End Force Data and Element  Data. 

Specified multiples of element loads A ,  B, C  and  D can be  added to each 
structural load condition by the use of Structural Load Multipliers 
(see Sec. D.l). 

VI E. Fixed-End Force Data (IS, 6F10.0/5X,  6F10.0) 

Two cards for each set of fixed-end forces used in the analysis; cards 

~- 

do not have to be in numerical order. If no fixed-end forces are present 

(NUVFX = 0 )  , omit all  cards. 

1 6 16 26 36 46 56 65 
Card 1: node i 
Card 2:  node j 

X y z 

.. 

~ SFT ( 2) " , 
~. . . . .... 
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N = Fixed-end force set number. 

SFT = Fixed-end forces and mments. Use the sign convention shown 
in Fig. F.l.’l. 

VI F Element Data (715, F1O.O, 415, 216, 13) 

One card for each element; cards must be  in an ascending order of 

element numbers. 

IEL = Element number. 

I = Number of node i (see Fig. F.l.l). 

J = Number of node j. 

K = Number of node k. This node defines the direction of y-axis, 
and should n o t  lie on the line of i-j. 

I M T  = Elaterial number of element. 

IGEO = Geometric property number of element. 

IDV = Design variable number of element. 

FRC = The design variable fraction qi in eqn. (B.l.2). If blank, 
computer sets FRC = 1.0. 

L C ( 4 )  = Numbers o f  fixed-end force sets that are to be included in 
element  loads A ,  B, C and D, respectively (also see Element 
Load  Multipliers). 

NI = End release code for  node i. The end release code consists of 
a six digit number, each digit corresponding to an end-force 
as shown below. 

1 2 3 4 5 6  If any of the end-forces is known to I R -  I R -  I R -  I F I -  l i i -  I M -  I be zero, &e to the presence of a 

be used; otherwise the digit should be 
1  eft  blank . 

x y z x y z  hinge or a roller, the digit one must 
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NJ = End  release  code for  node j. 

INC = Node  number  increment  in  automatic  generation of element  data 
(see  below). If blank,  computer  sets  INC = 1. 

Automatic  element  data generation---if there  exists  a  series of elements 
I E L  = m, m+l,  m+2,. . ., which  satisfies  the  following  requirements: 

(a) The  numbers  of  the  end-nodes  form  the  sequences 
.I=i, i+INC,  i+2*INC, ..., 
J=j ,  j+INC, j+2*INC,. . . ; 

including  the  node  number K, 
(b) The  rest of the  data  is  identical  to  all  elements of the series, 

then  only  the  last  card of the  series  will  be  required.  The  element  data 
for the  other  elements of the  series  will  be  generated  automatically. 
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F . 3  Construct ion Code No. 2 

I n   t h i s   c o n s t r u c t i o n   c o d e  a l l  the  dimensions of  t h e   c r o s s   s e c t i o n  

a r e   s c a l e d  by t h e  same f a c t o r  upon  redesign.   This  scheme g i v e s   t h e  

use r   an   oppor tun i ty   t o   choose   op t ima l   p ropor t ions   fo r   t he   c ros s   s ec t ion ,  

and  maintain  these  proport ions  throughout   the  design  process .  

The expres s ions   fo r   t he   bend ing  and t o r s i o n a l   p r o p e r t i e s   o f   t h e  

c r o s s   s e c t i o n  now take  form 

and   the   formula .   for  stress r a t i o   r e d e s i g n  becomes 

A 3  “A a 2  2 
( f )  =[,C+$, + I + )  

(F.3.1) 

(F.3.2) 

(F.3.3) 

This   equat ion i s  s o l v e d   i t e r a t i v e l y   f o r  A ‘ / A  i n   t h e  manner desc r ibed  

below. 

Let rv = (A’/A)‘)be t h e   r a t i o   o b t a i n e d   f r o m   t h e   p r e v i o u s   i t e r a t i o n  

( i t e r a t i o n   v ) ,  and r = the   improved  value  predicted by t h e  

c u r r e n t   i t e r a t i o n .  If  

v+ 1 

t h e  improved  value i s  obtained  from  tha  solrl t ion  of  the  cubic 

e q u a t i o n   i n  (r ) : v + l  1 / 2  

(F.3.4) 
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If ( F . 3 . 4 )  i s  n o t   s a t i s f i e d ,   t h e   i t e r a t i o n   f o r m u l a  i s  taken as cubic  

e q u a t i o n   i n  r . v + l  . 

(F.3.6) 

I f  T = 0, ( F . 3 . 5 )  y i e l d s  an e x a c t   s o l u t i o n   o f  ( F . 3 . 3 ) .  

Simi lar ly ,  ( F . 3 . 6 )  i s  an  exact  redesign  equation i f  CT = 0 

o r  CT = 0.  In  both cases o n l y   o n e   i t e r a t i v e   c y c l e  is  needed.  Other- 

wise t h e  number of i t e r a t i o n s  i s  l i m i t e d   t o   s i x   i n   e a c h   r e d e s i g n   c y c l e ,  

i . e . ,  t h e   r e s u l t s  of t h e   s i x t h   i t e r a t i o n   a r e   u s e d  f o r  t h e  new design 

A 

B 

even i f  t h e   i t e r a t i v e   s o l u t i o n   f a i l e d   t o   r e a c h   c o n v e r g e n c e .  

The i n p u t   d a t a  and the   r ema in ing   de t a i l s  o f  ana lys i s   and  re- 

des ign   p rocedures   a r e   i den t i ca l   t o   t hose   u sed  for Construct ion Code 

No. 1. 
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G. P U V E  STRESS  QUADRILATERAL  OR  TRIANGULAR  ELEMENT 

G.l General  Information 

Figure G.l.l 

Quadrilateral and Triangular Plane Stress  Elements. 
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The basic  plane stress element is  the   quadr i la te ra l  shown i n  

Fig.   G. l . l (a) .  The nodes 1 and 2 determine  the  local  Cartesian  coordinate 

axes 2 and 7, and the   r e l a t ive   o r i en ta t ion  of the  natural  element 

coordinates s and t i n   t h e  manner indicated on the  drawing. Note t h a t  

the  natural  element  coordinates take the  values +1 o r  -1 at  the  s ides   of  

the  element. A l l  four  nodes of the  element  should  be on the same plane. 

If the  nodes are notco-p lanar   e r rors  w i l l  occur  in  the  computation  of 

element  properties. The magnitude  of t h e   e r r o r  becomes more ser ious 

with increasing warp of the  element. 

The displacement f i e ld   w i th in   t he  element is  taken  in   the form 

4 

i= 1 
u ( s , t )  = C h i ( s , t ) i i  + h ( s , t ) a l  + h6(S,t)a2 , 5 

4 

i=l 
;(s , t )  = C hi (S , t ) i i  + h5(S,t)a3 + h6(S, t )a4 , (G.l.1) 

4 
i ( S , t )  = C 11. (S , t ) i i  , 

1 i= 1 

where c, ; and w are   the  components o f  the  displacement  field  in  the 

d i rec t ion  of the  local  Cartesian  coordinate  axes,  u v and i denote 

the  displacement components of node i ,  and a are  generalized  coordinates 

in  addition  to  the  nodal  displacements.  The shape  functions  in (G.  1.1) 

are 

- -  
i' i i 

j 

hl = - (1 -~ )   (1 - t )  1 h = -(l+s) 1 (1-t)  
4 2 4  

h = - ( l+s)   ( l+ t )  h4 = "(1-S) ( l + t )  1 1 
4 3 4  

1 h5 = ~ ( 1 - S )  2 h = - ( l - t )  . 1 2 
6 4  

(G.1.2) 
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The  functions hl to  h  are  Lagrangian  interpolation  polynomials;  they 

result in  a  linear  displacement  'field  along  each side of  the  element, 

and  thus  maintain  displacement  continuity  between  the  elements. The 

functions  h and  h6, on the  other hand, represent  incompatible  displace- 

ment  modes,  because  they  cause  the  sides of the  elements  to  be  deformed 

into  parabolas. 

4 

5 

According  to  the  examples  in [ 2 ] ,  the  introduction of the  incompatible 

modes  can  lead  to a significant  improvement of the  prebuckling  analysis 

for  certain  problems. 

Note  that h and h vanish  a,t the  nodes.  Consequently, a . ' s  are 

internal  degrees of  freedom,  which  can  be  eliminated  at  the  element  level 

by  the  static  condensation  procedure. The  user of the  program,  however, 

has  the  option of suppressing  the  incompatible  modes  altogether,  in  which 

5 6 J 

case  the  computer  would  set a 
j 

All  the  area  integrals  in 

carried  out  numerically,  using 

integration  points. It can  be 

= 0 ,  j = 1,2,3,4. 

the  computation of element  properties  are 

Legendre-Gauss  quadrature  with  four 

shown  that  the  numerical  integral  is 

exact  only for rectangular  elements. Since  the  integration  error in- 

creases  with  the  skewness of the  element,  highly skewed  quadrilaterals 

are  to  be  avoided if possible. 

The  triangular  element  used  in  the  program  is  simply  a  limiting 

case  of  the  quadrilateral  when  two of the nodes are  allowed  to  coincide, 

as seen  in  Fig. G.l.l(b). I t  requires no special  provisions  within 

the  program. 

The  basic  element  loads  are  gravitational  forces  in  the  three 

coordinate  directions,  therma.1  loading,  and in-plane  pressure  acting  on 
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one  side o f  the  element  (the  pressure  loading  is  not  allowed for the 

undirectionally  reinforced  element  described under Construction Code 1). 

Temperature-dependent  material  properties  may be used  in  the  pro- 

gram, in which  case  the  material  properties  should  be  specified  for  several 

temperatures.  The  material  properties of each  element  are  obtained 

from the  specified  properties  by  linear  interpolation.  The  highest and 

lowest  temperatures  at  which  the  material  properties  are  prescribed  should 

cover  the  entire  range of element  temperatures. 

The  output of each  analysis  cycle  consists of the  in-plane  stress 

resultants  at  the  origin of the  natural  coordinates---point 0 in 

Fig.  G.l.l(a),  and  at  points A,  B, C, and D. The stress  resultants  at 

point 0 are  printed  out  ttqice: once  with  respect  to  the  local  Cartesian 

coordinates x and 7, and  once  with  respect  to  the  coordinates 2 and ^y 

defined  by the  angle B in  Fig.  G.l.l.  The  mid-side  forces  are  expressed 

in  terms of the  directions X*, yA, etc.  shown in Fig..  G.l.l(a). The 

convention f o r  positive  stress  resultants  is  given  in  Fig.  G.1.2. 

Y 

Figure  2.1.2 

Positive  Stresz  Resaltants 
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By usi’ng  an  appropriate  value of  the  stress-printout  option  code  NS, 

the  user can suppress  the  computation of some or all of the  stresses. 

The  element  data  deck f o r  each  construction  code  must  start  with: 

VI A.  Element  Control  Card - 

1 6 11 16 21 26 31 35 

blTYPE NUME NUMIAT  NUMTC  KODE n NUMGEO 

1” NPAR (7 )  

NPAR(1) = Code for element  type  (MTYPE). For plane  stress  elements  use 
NPAR(1) = 3. 

NPAR(2) = Number of elements with  the specified  construction  code (NUFIE). 

NPAR(3) = Number of different  materials  used  for  the  given  construction 
code (NLJMblAT). 

NPAR(4) = Maximum  number of temperatures  for  which  material  properties 
are  given  (NmlTC). If blank,  computer  sets NPAR(4) = 1. 

NPAR(5) = Construction  code  (KODE). 

NPAR(6) = Code  for  use of incompatible  displacement  modes (n). 
NPAR(6) = 0: use  incompatible  modes. 
NPAR(6) > 0: suppress  incompatible  modes. 

NPAR(7) = Number of genetic  properties  (not  used for Construction 
Code  No. 2). 
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G .  2  Construction  Code No. 1 

This  construction  code  deals  with  unidirectionally  stiffened  panels. 

All the  cross-sectional  dimensions  shown  in  Fig.  G.2.1,  including  the 

stiffenerspacing w, are  assumed  to  change  by  the  same  proportion  during 

redesign. 

W e - - - - t 

\ ."" ""- 
" " i 

d 4 
- I .  "t" 

* S  -0 x Is 

W - - - 
Note: A and I are  the  cross-sectional  area and  moment of 
the  stiffener,  respectively. 

S S 

Figure  G.2.1 

Cross  Section of Unidirectionally  Stiffened  Panel. 

inertia of 

The  sheet  thickness  t  is  chosen  as  the  size of the  element,  i.e.,  it 

is  taken  as the  independent  dimension of the  cross  section. 

For  the  purposes of analysis,  the  panel  is  treated  as  a  homogeneous, 

orthotropic  slab  with  equivalent  extensional  and  shear  flexibilities: 

P I v 
EA l/t -v / t  0 

NA -v / t  l/t 0 

Nx̂  X 
1 

EA = -  
Y E Y 

XY 
Y XY 1 0 0 2(l+v)/t NAA 

(G.2.1) 
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In  (G.2.1),  x^ axd 9 a r e   t h e   p r i n c i p a l  material coord ina tes  shown i n  

Fig.  G.2.2; N2, N and NAA r ep resen t   t he   ave rage  membrane stress 

re su l t an t s ;   and  
r̂  XY 

i s  the   "average"   th ickness   o f   the   pane l .  

A 

"Effect ive"  panel  

a 

Figure G . 2 . 2  

Unid i rec t iona l ly   S t i f fened   Panel  

The fo l lowing   poss ib le  modes o f   f a i l u r e   a r e   c o n s i d e r e d   i n   r e d e s i g n  

opera t ion :  

(1) stresses exceeding   the i r   a l lowable   va lues   in   the   shee t ;  

(2)  general   buckling o f  t h e   p a n e l ;  

( 3 )  buckling of t h e   s h e e t   b e t w e e n   t h e   s t i f f e n e r s ;  

(4) f a i l u r e   o f   s t i f f e n e r s .  

The stress r e s u l t a n t s   a c t i n g   a t   t h e   m i d d l e   o f   t h e   p a n e l  (s = 0 ,  t = 0)  

on ly   a r e   u sed   i n   eva lua t ing   t hese   f a i lu re  modes. 



G . 2 . 3  

Other  'types of local  buckling faj lure.  can  be  handled  simply  by 

choosing  suitable  cross-sectional  proportions of the panel, i.e., pro- 

portioning  the  reinforcement such that  sheet  buckling  would  always  occur 

prior  to (or  simultaneously  with)  the  local  buckling.  The  user  may  even 

optimize  the  cross-sectional  proportions  by  maximizing  Lhe  configuration- 

efficiency  coefficient of the panel in  a manner  similar  to  Ref. [ 9 ] ,  p .  107. 

(1) Stress  limits 

The  modified  Von  Mises  yield  criterion 

( G . 2 . 2 )  

is  used  for  the  stress-constrained  design of the  sheet,  where a* and T* 

are  allowable  normal  and  shear  stresses,  respectively.  Different  allowable 

stresses  may  be  specified for tension (a*) and  compression (a*). Equa- 

tion(G.2.2)  reduces  to  the  original  Von  Mises  yield  criterion  only if 

a* = a* and T* = u*/n.  

t C 

t C 

Using  (G.2.2) , the  stress  ratio  redesign  formula  can  be  shown  to  be 

where N*, = a*:, N*, = a*t  and N*,, = T*t . 
X Y XY 

(2) General  buckling of  panel 

The panel  is  treated  as a homogeneous,  orthotropic  plate  with  simple 

supports.  It  is  assumed  that  only  the  compressive  stress 0, in the 

airection of the  stiffeners  influences  buckling. 
X 

Since  the  buckling  formula  for  a  general  quadrilateral i s  not 

avaiiabie,  tne  panel  is  treated  as a rectangle  with.the  "effective"  width 

b shown in Fig. G . 2 . 2 .  The  effective  width  is  computed  automatically; 
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h o w e v e r ,   t h e   u s e r   h a s   t h e   o p t i o n   o f   s u b s t i t u t i n g   h i s  own value .  

According t o  Ref. [s], Sec.  C.2,  p.  26,  the  compressive  buckling 

stress of a s t i f f e n e d   p . l a t e  is  

where   the   buckl ing   coef f ic ien t  i s  given by . 

A N 7 1" N - 1  s + 

M wt 

(G.2.4) 

\ -. .. - I 
In  (G. 2 .5) ,  N i s  t h e  number of  bays  between  st iffeners  ,and 

E t  D =  
12(1-v ) 

2 

The remaining  symbols are def ined  i n  Fig.  G.2.1. 

For   large numbers of  st iffeners,we  can  approximate (X-1)/N = 1 and 

N = b/w, and o b t a i n   f o r   t h e   c r i t i c a l   s t r e s s   r e s u l t a n t  

2 

2 4  

k l r  E 
(Nx^Icr - t5 - 

1 2 ( 1 - ~  ) b  
(G.2.6) 

where 

k 1 = 2(:).{ [ 1 + "(:I: 2 ) I s  (1 + Asd 2 / Is  )] 1'2 + .) . ( G . 2 : 7 )  
0.12+0.88i / t  

Note t h a t  t h e  c o e f f i c i e n t  k does  not  change upon r edes ign   s ince  the 

cross-sec t iona l   p ropor t ions  are kept   constant .  The stress r a t i o  re- 

1 

design  formula  hence becomes 
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(3)   Buckl ing  of   sheet   between  s t i f feners  

Figure  G.2.3 

Sheet Between S t i f f e n e r s .  

The shee t   be tweens t i f feners ,  shown in   F ig .   G.2 .3 ,  i s  t r e a t e d   a s  a 

long ,   s imply   suppor ted   p la te   o f   e f fec t ive   wid th  we.  The general  form 

o f  the   compress ive   buckl ing   s t ress   for   each   of   the   th ree   load   condi t ions  

shown i s  

‘c r = k  (G.2.9) 

For   s imple   suppor ts ,   the   buckl ing   coef f ic ien ts   for   longi tudina l  

compression,  transverse  compression and shear  are,  r e s p e c t i v e l y  

k.-. = 4.00, kA = 1 - 0 0 ,  k** = 5 - 3 5 .  
X Y 

(G.  2.10) 
XY 

If a l l  loads   a r e   app l i ed   s imul t aneous ly ,   t he   buck l ing   c r i t e r ion  

( in te rac t ion   formula)  i s  taken as 

7 2 
-c+/ (aA) - ay^/ (op)cr + T:J (TXhFIcr = 1 - x x c r  XY 

(G.2.111 
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The in te rac t ion   formula   has   an   exac t   theore t ica l   bas i s   on ly  when o,, = 0 o r  

TA,. = 0; otherwise is  an approximation. 
Y 

XY 

The stress ra t io   r edes ign   fo rmula   ob ta inab le  from  (G.2.9) t o  (G.2.11) 

i s  

Equation  (G.2.12)  remains  valid i f  N2 and N, a r e   p o s i t i v e   ( t e n s i l e ) .  
Y 

( 4 )   F a i l u r e   o f   s t i f f e n e r s  

L -  W 
% - 

L 

c 
t """ 

-4,I ----O- - d -- Centroid  of "'column" 

As,  Is "-+- 

--- F Centroid of  s t i f f e n e r  

Figure  G.2.4 

S t i f f e n e r  and  Sheet  Treated as a Column. 

.4 s t i f f e n e r  and the   a t tached   shee t   ( see  F i g .  G .2 .4 )   a r e   t r ea t ed   a s  a 

column of length rla'l. The value of l'alr i s  c a l c u l a t e d  by the  computer 

i n   t h e  manner ind ica t ed   i n   F ig .  G . 2 . 2 ,  o r  it may be   u se r - spec i f i ed .  
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If N, is  positive  (tensile), the  failure  analysis  is  skipped.  For 
X 

compressive  loading,  the  Euler-Johnson  failure  criterion  shown in 

Fig.  E.Z.1  is used. 

The  cross-sectional  area of the  column  in  Fig.  G.2.4  is 

A = A  + w t  
S 

(G.2.13) 

and  its  moment of  inertia  can  be  shown  to  be 

I = wt  /12 + Is 3 + d2 [wt  (A,/A)2 + AS (1-As/A) 2 ] . (G. 2.14) 

The  unit  moment of inertia,  which is invariant of  the  value of t, 

can  be  calculated  from 

4 j = I./t . (G.2.15) 

For long  columns  that  fail  by  Euler  buckling,  the  critical  compressive 

stress  resultant is 

CT E 1  - C.rr2Ej 3 2 
cr 2 

N =" t ,  
a w a2(w/t) 

from  which we obtain  the  redesign  formula 

t'/t = (-N2/Ncr)  1/3 . 

Johnson's  parabola,  which  governs  the 

(G.2.16) 

(G.2.17) 

failure  of  short  columns, 

leads  to  the  following  quadratic  equation  in  t'/t: 

NC ( 
* t'/t)2 + NA(t/t') - (Nc) 2 /(4Ncr) = 0 , (G.2.18) 

X 

where  N* = u*?, U* being  the  compressive  strength of the  stiffener 

(yield  stress or crippling  stress). 
C S S 



VI B Mater ia l   Proper t ies   Data  

A sepa ra t e   da t a   deck  is  requ i r ed   fo r   each  material used. The 

decks do not   have  to   be  in   numerical   sequence  of   mater ia l   numbers .  

Temperature-Independent  Data  (215, F1O.O) 

N = Material  number 

NTC = Number of   t empera tures   for   which   proper t ies  o f  t h i s   m a t e r i a l  
a r e   g iven .  If blank,  computer sets NTC = 1. 

WT = Weight-density  of  the material. 

Temperature-Dependent  Data  (8F10.0) 

One ca rd   fo r   each   t empera tu re   fo r   wh ich   t he   p rope r t i e s   o f   t h i s  

m a t e r i a l  are given.  Cards  must  be  in  ascending  order o f  temperatures .  

L PMAT(8) ,I 

PMAT(1) = Temperature f o r  which the   p rope r t i e s   a r e   g iven   (T ) .  

PMAT(2) = Young's  modulus o f  e l a s t i c i t y  ( E ) .  

PblAT(3) = P o i s s o n ' s   r a t i o  ( V ) .  

PMAT(4) = Coef f i c i en t   o f   l i nea r   t he rma l   expans ion  ( a ) .  

PMAT(5) = Tens i l e   s t r eng th   o f   shee t  (cf*) .  

PbIAT(6) = Compressive  strength of  sheet (cT*). I f  blank,  computer sets 

P?V.T(7) = Shear   s t rength  of s h e e t  (T*). PMAT(7) = 0.T77 PMAT(5). 

PMAT(8) = Compressive  strength ( y i e l d  or c r i p p l i n g   s t r e s s )  of  s t i f f e n e r  

t 

c }  

PbIAT(6) = PMAT(5) , 

(0;). I f  blank,  computer sets PMAT(8) = PMAT(6). 
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V I  C Geometr ic   Propert ies  Data (15,  6F10.0) 

A s e p a r a t e   c a r d  i s  requi red   for   each   e lement   geometry .  The c a r d s  

do  not  have t o   b e   i n   n u m e r i c a l   s e q u e n c e  of geometric  property  numbers. 

1 6  16 26 36  46 56  65 

N WE D SI SA W TH 

N = Geometric  property number. 

TH = Sheet   th ickness  t o f   t he   r e f e rence   c ros s   s ec t ion   ( s ee   no te   be low) .  

w = Distance w be tween   t hes t i f f ene r s   o f   t he   r e f e rence   c ros s   s ec t ion .  

SA = Cross - sec t iona l  area As o f   t h e   s t i f f e n e r i n   t h e   r e f e r e n c e   c r o s s  
s e c t i o n .  

S I  = Moment o f   i n e r t i a  I, o f   t h e   s t i f f e n e r   a b o u t  i t s  own c e n t r o i d a l  
a x i s   i n   t h e   r e f e r e n c e   c r o s s   s e c t i o n .  

D = Distance d be tween  the   cen t ro id   o f   the   s t i f fener   and   the   mid-p lane  
of t h e   s h e e t   i n   t h e   r e f e r e n c e   c r o s s   s e c t i o n .  

WE = Effec t ive   wid th  We o f   t h e   s h e e t   b e t w e e n   t h e s t i f f e n e r s   i n   t h e  
re ference   c ross   sec t ion   (used   in   buckl ing   ana lys i s   o f   the   shee t ) .  
If blank,  computer sets WE = W. 

The Geometric  Properties  Data i s  used  only  for   the  computat ion  of  

u n i t   c r o s s - s e c t i o n a l   p r o p e r t i e s ,   i . e . ,   p r o p e r t i e s   € o r   u n i t   s h e e t   t h i c k n e s s .  

The re ference   c ross   sec t ion ,   therefore ,   can   be   chosen  as any design 

t h a t   h a s   t h e   d e s i r e d   c r o s s - s e c t i o n a l   p r o p o r t i o n s ;  it does   no t   have   to  

b e   t h e   i n i t i a l   d e s i g n .  

VI D Element Load Mul t ip l ie rs   (4F10.0)  

Four  cards as indicated  below: 

1 11 2 1  31  40 

thermal 

z -g rav i ty .   y -g rav i ty  tl-lermal ( x - g r a v i t y  

Card 1: Elemerit load A z -g rav i ty  y -g rav i ty   x -g rav i ty  

Card 2 :  Element  load B 

thermai x -g rav i ty   y -g rav i ty  

Card 4 :  Element  load D z -g rav i ty   y -g rav i ty  thermal   !x-gravi ty  

Card 3 :  Element  load C z -g rav i ty  

~ ~~ 

I -g"--------- EMUL(4,4) 
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ElrRlL = Frac t ions   o f   bas ic   e lement   loads   ( thermal   loading   and   grav i ty  
loads   i n   t he   t h ree   g loba l   coo rd ina te   d i r ec t ions )   wh ich  are t o  
be   i nc luded   i n   t he   e l emen t   l oads  A,B,C and D. 

Element Load Mul t ip l i e r s   s imp ly   de f ine   t he   e l emen t   l oads  A , B , C  and D. 

Various  mult iples   of   these  e lement   loads  can  be  added t o  e a c h   s t r u c t u r a l  

load   condi t ion  by t h e   u s e   o f   S t r u c t u r a l  Load Mul t ip l i e r s   ( s ee   Sec .   D .1 ) .  

VI E Element  Data  (715, 5X, 4F10.0/2F10.0,  215) 

Two cards   for   each  e lement;   cards  must  be  arranged  in  an  ascending 

order  of  element  numbers. 

1 6 11 16 2 1  26 31  36 41  51  61 71 80 

IEL IDV Card 1 IbWT I I J I K I L 

k- IE (4)- 

1 11 2 1  26 30 

BETA h'S Card 2 EFC 

I E L  

IE 

IFlAT 

I DV 

FRC 

RE FT 

AA 

AB 

= Element  number. 

= Node numbers I,J,K and L o f   t h e   f o u r   c o r n e r   n o d e s   ( s e e   F i g .   G . l . l ) .  
Kodes 1 and 2 s h o u l d   d e f i n e   t h e   s i d e   t h a t  i s  most p a r a l l e l  
t o  t h e   s t i f f e n e r s a s   i n d i c a t e d   i n   F i g .  G . 2 . 2 .  For a t r i a n g u l a r  
e l emen t   ( t he i r   u se  i s  not  recommended f o r   s t i f f e n e d   p a n e l s ) ,  
t h e  same node number must be  used  for  nodes 3 and 4 .  

= Material  number o f  element.  

= Design  var iable  number of   e lement .  

= The d e s i g n   v a r i a b l e   f r a c t i o n  Q i n   e q n .   ( B . l . 2 ) :  A. = Q . D  . 
Note t h a t  A i ,  t h e  s i ze  of   the  e lement ,  i s  t aken  as *he 
shee t   t h i ckness  t .  If  blank,  computer sets FRC = 1.0.  

i 1 m  

= Reference  temperature   ( teaperature   of   the  stress-free s t a t e )  
of the  e lement .  

= The e f f e c t i v e   p a n e l   l e n g t h  "a" used  in   computing  the  Euler  
buck l ing   l oad   (G .2 .16 )   o f   t he   s t i f f ene r s .  I f  blank,  computer 
c a l c u l a t e s  "a" i n   t h e  manner shown i n   F i g .  G . 2 . 2 .  

= n e  ef fec t ive   pane l   wid th  b u s e l i n  computing  the  general  
buckl ing   s t ress   (G.2 .6)   o f   the   pane l .  I f  blank,  computer  calcu- 
l a t e s  b i n   t h e  manner shown i n   F i g .  G .  2.2. 
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BETA 

EFC 

NS 

INC 

= The angle  B between t h e   s t i f f e n e r s  and the   l oca l   x -ax i s  
(see  Fig. G . 2 . 2 ) .  

= The e n d - f i x i t y   c o e f f i c i e n t  C used   in   Euler   buckl ing   load  
(G.2.16) o f   t h e .   s t i f f e n e r s .  If  blank,  computer sets EFC = 1 .O 
(s imple  supports) .  

= St re s s   p r in tou t   code :  

P o i n t s   f o r  which stresses are p r i n t e d  
[see F i e .  G.l.11 

If  blank,computer   sets  NS = 3 .  I f  NS = 15  and the  e lement  i s  
t r i angu la r ,   compute r   s e t s  hS = 1 2 .  Note tnat des ign   of   the  
element i s  always  based on s t r e s s e s  a t  p o i n t  0 ,  r e g a r d l e s s   o f  
which pr in tout   code  i s  used. 

= Node number increment   in   automatic   generat ion  of   e lement   data  
(see  below). I f  blank,   computer   sets  INC = 1. 

Automat ic   e lement   da ta   genera t ion- - - i f   there   ex is t s  a series o f  ele- 

ments IEL = m ,  m + l ,  m+2, ..., which sat isf ies  the  fol lowing  requirements:  

(a)   the   node numbers  form the  sequences 
I = i ,  i + I N C ,  i+2*INC, ..., 
J= j ,  j + I N C ,  j+2*INC,. . . , 
K=k, k+INC, k+Z*INC, ..., 
L=R, % + I N C ,  R+2*INC, ..., 

(b) the   remainder   o f   the   da ta  i s  i d e n t i c a l   f o r   a l l   e l e m e n t s   o f   t h e  
series , 

t hen   on ly   t he  las t  card   o f   the  series w i l l  be   required.  The element 

d a t a   f o r   t h e   o t h e r   e l e m e n t s   o f   t h e  series will be   genera ted   au tomat ica l ly .  
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G.3 Construction Code  No. 2 

I so t ropic ,  homogeneous panels   subjec ted   to  stress cons t r a in t s  

only  are   t reated  under   this   construct ion  code.  The variable  dimension 

of t he  element  (element s i ze )  is  the  panel   thickness  t. 

Two f a i l u r e   c r i t e r i a   a r e  used in   t he   s t r e s s   r a t io   r edes ign :  

a) Von Mises y ie ld   c r i t e r ion :  

(G.3.1) 

where a and a are the   p r inc ipa l   s t resses ,  and a* is  the  allowable 

normal s t ress .   Di f fe ren t   a l lowable   s t resses  may be spec i f ied   for   t ens ion  

(a*) and compression (a*). The corresponding  s t ress   ra t io   redesign 

formula i s  

1 2 

t C 

t t / t  = [ (Nl/X*)2 + (N2 /N*)  2 - (N1/N*) (N2/N*)] 1 / 2  $ (G.3.2) 

where N* = o*t,  and N1, N2 a r e   t h e   p r i n c i p a l   s t r e s s   r e s u l t a n t s .  

b) Maximum shear   s t ress   theory   o f   fa i lure :  

T / T * = 1  , max (G.3.3) 

'max 

leads   to   the   s t ress   ra t io   redes ign   formula  

being  the maximum shea r   s t r e s s  and T* i t s  allowable  value.  This 

(G.3.4) 

where (Ns)max i s  the  maximum s h e a r   s t r e s s   r e s u l t a n t ,  and N* = T * t .  
S 

The value  of t ' / t  i s  chosen  as  the  larger  of (G.3.2) and (G.3.4); 

however, the  user  can  suppress  the  use  of (G.3.4) by s e t t i n g  T* = 0 

on the   mater ia l   da ta   cards .  



G.3.2 

The redesign  formulas are a p p l i e d   t o  a l l  p o i n t s  o f  the  panel   where 

t h e  stress p r i n t o u t  is requested  (points  O , A , B , C  o r  D shown i n   F i g .  G . l . l ) .  

This  is  i n  c o n t r a s t   t o   C o n s t r u c t i o n  Code No. 1, where  point  0 only was 

used   for   redes ign .  

V I  B Material P r o p e r t i e s  Data 

A separa te   da ta   deck  is  requi red   for   each   mater ia l   used .  The decks 

do not  have tu be  in   numerical   sequence  of   mater ia l   numbers .  

Mater ia l   Control  - Card (215, F1O.O) 

1 6 11 21 

NTC WT 

N = Mat'erial  number. 

NTC = Number of  tempera tures   for   which   proper t ies  of  t h i s  material 
a re   g iven .  If blank,   computer   sets  NTC = 1. 

KT = Weight-density of t h e   m a t e r i a l .  

Temperature-Dependent  Data  (7F10.0) 

One card f o r  each  temperature   for  which t h e   p r o p e r t i e s  of t h i s  

mater ia l   are   given.   Cards must  be in   ascending   order   o f   t empera tures .  

1 11 2 1  31 41 51  61 70 

I; PMAT(7) '1 

PbWT(l)= Temperature f o r  which t h e   p r o p e r t i e s   a r e   g i v e n  (T) . 
PMAT(Z)= Young's  modulus o f  e l a s t i c i t y  ( E ) .  

PMAT(3)= P o i s s o n ' s   r a t i o  (v). 

PLIAT(4)= Coeff ic ien t  of  l inear   expans ion  (a). 

PMAT(5)= T e n s i l e   s t r e n g t h  (u t ) .  
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PMAT(6)= Compressive  strength (at).  If  blank,  computer  sets PMAT(6)=PMAT(5). 

PMAT(7)= Shear  strength (T*) . If blank , maximum  shear  stress  theory of 
failure  will  not  be  used  in  redesign. 

VI C Element  Load  Multipliers  (4F10.0) 

Four  cards  as  shown  below: 

1 11  21  31 41 50 

thermal 

Card 2 :  B z-gravity x-gravity  ly-gravity  thermal \pressure 

Card  1: A z-gravity x-gravity l y-gravity pressure I 

thermal 

Card 4: D z-gravity y-gravity x-gravity pressure thermal 

Card 3 :  C z-gravity  y-gravity x-gravity pressure 

I-= . EMUL(4,5) -4 
EMUL = Fractions of basic  element  loads  (thermal  loading,  pressure 

acting  on  side of element, and  gravity  loads  in  the  three 
global  coordinate  directions)  which  are  to  be  included  in  the 
element  loads  A,B,C  and D. 

Element  Load  Multipliers  define  element  loads  A,B,C  and D. Various 

multiples of these  loads  can  be  added  to  each  structural  load  condition 

by  the  use of Structural  Load  Multipliers  (see  Sec.  D.l). 

VI D Element  Gata  (715, F5.0 ,  3F10.0, 215) 

One  card for each  element;  cards  must  be  arranged  in  ascending 

order of  element  numbers. 

1 6 11  16  21 26 31 , 36 41 51 61 ~. . . - - - - - 71 . . . 76 80 
IEL I l J l K l L  IMAT IDV  BETA PRESS REF?' FRC 

IEL = Element  number. 



I' 

IE 

I biAT 

I DV 

FRC 

RE FT 

PRESS 

BETA 

NS 

G.3.4 

= Node  numbers  I,J,K  and L of the  four  corner  nodes  (see 
Fig.  G.l.l).  Nodes 1 and 2 should  define  the  side on which 
pressure  load  is  applied, if any.  For a triangular  element, 
the  same  node  number  must  be  used  for  nodes 3 and 4 .  

= Material  number of element. 

= Design  variable  number of the  element, 

= The  design  variable  fraction ni in  eqn. (B.l.2):  Ai = niD,. 
Note  that Ai, the  size of the  element,  is  taken  as  the  panel 
thickness  t. If blank,  computer  sets  FRC = 1.0. 

= Reference  temperature  (temperature of the  stress-free  state) 
of  the  element. 

= Compressive  force  per  unit  length  (pressure  resultant)  applied 
to side 1-2  of the  element. 

= The  angle fi which  defines  the x^ and 9 axes  as  shown  in  Fig.  G.l.l. 
The  angle  is  used  only  to  control  the  stress  printout  at  point 0 
(see Sec. G.l). 

= Stress  printout  code  (see  Sec. G.2). Note  that  the  design  of 
the  element is based  on  the  stresses  at  all  the  points  for  which 
stress  printout  is  requested. 

Irjc = Node  increment  in  automatic  generation of element  data (see  Sec.  G.2). 

I 
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H. QUADRILATERAL SHEAR PANEL 

H. 1 General  Information 

Figure  H.l.l 

Garvey's Shear  Panel  Idealization. 

A shear  panel,  shown  in  Fig.  H.l.l,  is  assumed to resist  only  shear 

tractions  applied  to  its  edges;  it  has no rigidity  with  respect  to  normal 

edge  tractions.  The  resultant  forces of the  shear  tractions Q i = 1,2,3,4, 

must  form  a  self-equilibrating  system,so  that  only one of resultants 
i' 

is  statically  independent. 

All four  corner  nodes  should be on  the  same  plane,  otherwise  errors 

will  arise  in  the  computation o f  element  properties. 

Following NASTRAN [SI , the  equivalent  nodal  forces  F1  and F are 

obtained by "lumping"  one  half of each adjzcent- edge  force intc  the  corner. 
2 

This  method was chosen  purely  on  the  basis of  convenience,  because it 



element.  Again,  only  one  of  the  corner  forces is  s t a t i c a l l y  independent, 

the  remainder  being  determined by equilibrium  requirements. 

In   o rde r   t o   ca l cu la t e   t he   s t r a in  energy  (i.e. , the   s t i f fness   mat r ix)  

of  the  element, an assumption must be made regarding  the  dis t r ibut ion  of  

t h e   s h e a r   s t r e s s  T in   the   pane l .  We adopted  the  distribution  suggested 

by Garvey [ lo] ,  which satisfies equilibrium  equations,  but  not  compati- 

bi l i ty   of   the   resul t ing  displacement   f ie ld   (except   for  a parallelogram 

and a rectangle) .  The assumed shear   planes  are  shown in   F ig .  H . l . l ;  the  

magnitude  of T i s  taken   to  be inversely  proportional  to  the  square  of  the 

dis tance d from the  t 'baselinet '  AB.  The details  of  formulating  the  element 

propert ies ,   including  the  geometr ic   s t i f fness   matr ix ,  can be  found i n  

Ref. [SI. 

Two po ten t i a l   d i f f i cu l t i e s   a r i s e   i n   t he   u se   o f   shea r   pane l s :  

a) The s t a t e  of stress assumed by Garvey  can exist   only  in  rectangu- 

l a r   pane l ,  i .e . ,   only a rectangle can be i n  a s t a t e  of  pure  shear when 

sub jec t ed   t o   t angen t i a l  boundary t r a c t i o n s .   I t  i s  important,   therefore,  

no t   to   use   severe ly  skewed shear   panels   in   order  t o  avoid  erroneous 

r e s u l t s .  

b) The absence of ex tens iona l   r ig id i ty  w i l l ,  in   genera l ,   l ead   to  

a s ingu la r   s t i f fnes s   ma t r ix  o f  the  s t ructure ,   unless   each  shear   panel  

is  surrounded by elements  that  are  capable  of  absorbing  the  extensional 

corner   forces   ( forces   in   d i rec t ion   o ther   than  F1 and F2). Bar elements 

a re  commonly used for   th i s   purpose ,  where t h e   s t i f f n e s s  of each  bar 

usua l ly   inc ludes   the   ex tens iona l   r ig id i t ies   o f   the   ad jacent   shear   pae ls .  

Shear  panels  have  tradit ionally been  used in  aerospace  industry 

to   i dea l i ze   s t i f f ened   pane l s :   t he   shea r   r e s i s t ance  of the  sheet  i s  

. .. . . 
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accounted  for  by  the  shear  panel,  whereas  the  extentional  rigidities 

of the sheet and the  stiffenersare lumped  into  surrounding  bar  elements. 

This  idealization  was  undoubtedly  useful  in  the  days of hand  compu- 

tation, but  its  utility  has  become  dubious  with  the  arrival of the  finite 

element  method. An orthotropic,  plane  stress  quadrilateral  element,such 

as  described in  Sec. G.2, is  not  only  a  more  precise  representation of 

a stiffened  panel,  but  it  also  requires  less  input  data  and no more  computer 

time . 
Shear  panel  has  not  been  excluded  from  DESAP 2, partly  because  it 

may  still be a useful  element  in  special  applications,  and  partly  in 

recognition o f  its  popularity  with  aircraft  designers. 

Only  gravity  loads  are  permitted  as  the  basic  element  loads. 

Thermal  stesses  are  excluded, of course,  since  thermal  expansion  cannot 

be  resisted by a  state of pure  shear..  Temperature-dependent  material 

properties,  however,  are  allowed. 

The printout  that  follows  each  analysis  cycle  consists of  the 

shear flow Ni = Tit at  each of the  four  nodes, and  the  average shear 

flow of the panel,  given  by 

1 4  
(H. 1.1) 

The first card  of  the  element  data  deck  for  each  construction  code 

must  be: 

VI A Element  Control  Card (515) 
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NPAR(1) = Code for the element type (MTYPE) . For shear panel use MTYPE = 4. 

NPAR(2) = Number of elements with the specified  construction  code (NUME). 

NPAR(3) = Number of different materials used for this  construction  code 
(NUMMAT) . 

NPAR(4) = Maximum number of temperatures for which  the  material  properties 
are given (h%MTC). If blank, computer sets NPAR(4) = 1. 

NPAR(5) = Construction code (KODE). 
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H.2 Construct ion Code No. 1 

Homogeneous, i s o t r o p i c   s h e a r   p a n e l s  are t r e a t e d   u n d e r   t h i s  

construct ion  code.  The t h i c k n e s s  t of  the   pane l  i s  the   va r i ab le   d imens ion  

( s i z e  of the   e lement ) .  Two d e s i g n   c r i t e r i a   a r e   u s e d   i n   t h e   r e d e s i g n  

equat ions : 

(1) The average  shear stress T should  not  exceed i t s  prescr ibed  av 

limit T*. The corresponding stress ra t io   redes ign   formula  is  

t ' / t  = Nav/N* , (H.2.1) 

where N is  the   ave rage   shea r   f l ow  de f ined   i n   (H . l . l ) ,  and N* = T * t .  av 

(2)  The ave rage ' shea r   s t r e s s   shou ld   no t   exceed   t he   buck l ing  stress 

T cr ' For a r ec t angu la r   pane l ,   t he  c r i t i ca l  shear  stress i s  

T = k  cr  (H.2.2) 

where b i s  the  unsupported  width  (shorter  dimension) of t h e   p a n e l ,  and 

k r e p r e s e n t s   t h e   b u c k l i n g   c o e f f i c i e n t   f o r   s h e a r .  The s t r e s s   r a t i o  re- 

design  equation  obtainable  from ( H . 2 . 2 3  is  

(H.2.3) 

where N = T t. cr cr 
A good approximat ion   for   the   buckl ing   coef f ic ien t  i s  

k = c1 + C2(b/a) 2 , 0 < b / a  2 1 , (H.2.4) 

where a is  the  longer  dimension of  t he   pane l ,  and C and C a r e   c o n s t a n t s  

t h a t  depend on the  edge  support   condi t ions  only.  The va lues  o f  t h e s e  

1 2 
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cons t an t s   fo r   va r ious   edge   suppor t s  are g iven   i n   F ig .  H . 2 . 1 .  The f i g u r e  

a l s o  shows the  corresponding  support   codes ISU t h a t  are used t o   s p e c i f y  

the  boundary  condi t ions on element  cards. 

~~~~ ~ 

c1 = 5.35 

c2 = 3.99 C = 7 . 2 5  1-1 : 

I: 
D m 

c = 5.35 

ISU = 1 ISU = 4 

= 8.99 c = 5 . 3 5  

,C2 = 5.72 C = 5.63 

//ISU = 2 ISU = 5 

C1 = 8.99 C1 = 7.07 

C2 = 3.29 

ISU = 6 ISU = 3 
c2 = 3.91 

. " . -. . . . - -. . 

Simply  supported  edge 

/''////'//C C 1 amp e d edge 

Figure H . 2 . 1  

Edge Supports  for  Buckling  of  Shear  Panels.  

Equation (H.2.4.) agrees   p rec i se ly   w i th   t he   t heo re t i ca l   buck l ing  

c o e f f i c i e n t s   i n   t h e   l i m i t i n g  cases b /a  = 0 and b /a  = 1; i n  between  these 

values ,   the   approximation is somekrhdt on t h e   c o n s e r v a t i v e   s i d e .  

The unsupported  dimensions  of  the  panel,  a and   b ,   a r e   u se r - spec i f i ed .  

However, i f  the   d imens ions   a re  l e f t  blank,  the  computer w i l l  u s e   t h e  

"average"  panel  dimensions shown in   F ig .  H . 2 . 2 .  

I 



I 
H.2.3 

Figure H. 2 . 2  

Shear  Panel  and I ts  Average  Dimensions Used 
in   Buckl ing  Analysis .  

V I  B Ma te r i a l   P rope r t i e s  Data 

A sepa ra t e   da t a   deck  i s  r equ i r ed  f o r  each  mater ia l   used.  The 

decks do not  have t o  be in   numerical   sequence o f  mater ia l   numbers .  

Mater ia l   Control  Card (215,  F 1 O . O )  

1 6 11 20 

N 

N = Material number. 

NTC = Number of t e m p e r a t u r e s   f o r   w h i c h   t h e   p r o p e r t i e s   o f   t h i s   m a t e r i a l  
are given. If blank,   computer   sets  NTC = 1 .  

WT = Weight-density o f  t h e   m a t e r i a l .  

Tenperature-Dependent Data (4F10 .0 )  

One cz rd   fo r   each   t empera tu re   fo r  which t h e   m a t e r i a l   p r o p e r t i e s   a r e  

givcn. Cards must be i n  ascending  order  of  t e n p e r a t u r e s .  
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1 11  21 31- 40 . 
PMAT(1) = Temperature for which  the  material  properties  are  given (T). 

PMAT(2) = Young's  modulus of elasticity ( E ) .  

PMAT(3) = Poisson's  ratio (v). 

PMAT(4) = Shear  strength (T*). 

VI C Element  Load  MultiDliers 

Three  cards  as  shown  below. 

1 11 21  31 40 

A 

, Card  1:  x-gravity 

1 Card  2: y-gravity 

~ Card  3:  z-gravity 
~ 

ENUL = Fractions of basic  element  loads  (gravity  forces  in  the  three 
global  coordinate  directions)  which  are  to  be  included  in 
the  element  load  cases  A,B,C  and D. 

Element  Load  Multipliers  define  element  loads  A,B,C  and D. Various 

multiples of these  loads  can  be  added  to  each  structural  load  condition 

by  the  use  of  Structural Load  Multipliers  (see Sec. D.l). 

VI D Element  Data ( IS, 3F10.0,  IS) 

One card for each  element;  card  must be in  ascending  order of ele- 

ment  numbers. 

1 6 11  16  21 26  31  36 41 51 61 71 75 

1 IEL 1 I I J I K 1 L kMAT I IDV 1 ISU I FRC I AL I BL I INC I 
. ~ 

__ .. . ~ . ~ 

k- IE (~1" 
IEL = Element  number. 
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J 

K 

L 

IMAT 

I DV 

ISU 

FRC 

AL 

BL 

I NC 

= Node number of  node 1 (see  Fig.  H . 2 . 2 ) .  

= Node number of  node 2 .  

= Node number of node 3 .  

= Node number of  node 4 .  

= Material  number of  element. If blank,  computer sets IMAT = 1. 

= Design  var iable  number of  element;  

= Code for   edge   suppor t   condi t ions   used   in   loca l   buckl ing   ana lys i s  
(see  Fig.   H.2.1).  I f  blank,   local   buckl ing  analysis  w i l l  be 
SUpFreSSed. 

= The d e s i g n   v a r i a b l e   f r a c t i o n  rli i n  eqn.  (B.1.2) : A i  = ?lib. 
Note t h a t  A i ,  t h e   s i z e  o f  the   e lement ,  i s  taken a.= the   pane l  
th ickness  t .  If  blank,  computer  sets FRC = 1.0.  

= The longer  unsupported  dimension llall o f   t he   pane l   u sed   i n   l oca l  
buck l ing   ana lys i s .  If blank,  'la'' i s  c a l c u l a t e d  as shown i n  
Fig.  H.2.2. 

= The shorter   unsupported  dimension "b" of t h e   p a n e l   u s e d   i n   l o c a l  
buckl ing   ana lys i s .  If  b lank ,  "bI1 i s  c a l c u l a t e d  as shown i n  
Fig. H . 2 . 2 .  

= Node number increment   in   automatic   generat ion  of   e lement  
data  (see  belok;).  If blank,   computer   sets  INC = 1. 

Automat ic   e lement   da ta   genera t ion- - - i f   there   ex is t s  a s e r i e s   o f  

elements I E L  = m ,  m + l ,  m + 2 ,  . . .  which s a t i s f i e s   t h e   f o l l o w i n g   r e q u i r e -  

ments : 

a)   the  node numbers  form the  sequences 

I = i ,  i + I N C ,  i+2*INC,  ..., 
J = j , j + I N C ,  j+2*INC,. . . , 
K = k ,  k+INC, k+Z*INC ,... :, 
L = R ,  R+INC, li+2*INC,. . . ; 

b)  the  remainder of t h e   d a t a  i s  i d e n t i c a l   f o r   a l l   e l e m e n t s  of t h e  
series, 

then   on ly   t he   l a s t   ca rd   o f   t he   s e r i e s  will be  required.  The element 

d a t a  f o r  t h e   o t h e r   e l e m e n t s   o f   t h e  series wili be   genera ted   au tomat ica i iy .  
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I. PLATE QUA!IRILATERAL. OR TRIANGULAR  ELEMENT 

1.1  General  Information 

Mid-side  points 

1111 
Figure  1.1.1 

Quadrilateral  Plate  Element. 

The  basic  plate-shell  element  is  the  plane  quadrilateral  shown  in 

Fig.  1.1.1.  The  element  is  made  up of four  sub-triangles;  the  coordinates 

of the  internal  node  (node 5) are  obtained  by  averaging  the  coordinates 

of the  four  corner  nodes..  The  local  Cartesian  coordinates x and  are 
determined  by  the  mid-points of the  sides  in  the  manner  shown on the 

drawing. If the  element  is  orthotropic, x^ and y^ denote  the  principal 

material  coordinates;  their  direction  is  specified  by  the  angle B .  

The  membrane  behavior of the  element  is  obtained  by  treating  each 

sub-triangle as a constant  strain  element,  and  then  eliminating  the 

degrees-of-freedom of node 5 by  matrix  condensation. 

The  procedure of Clough  and  Felippa[ll]is  employed  to  derive  the 

bending  properties of the  quadrilateral. A so-called LCCT-9 element, 

with  nine  degrees of freedom,  is  used  for  each  subtriangle. The 

later21  disylacement  field of this  elemer?t is a cubic  functior?,  but the  

displacements  are  partially  constrained  such  that  the  normal  slope  along 
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each   s ide  is l i n e a r .  After t h e   f o u r   t r i a n g l e s  are assembled   in to   the  

quadr i la te ra l   e lement ,   the   degrees   o f   f reedom  of   node  5 are again 

e l imina ted   by   s ta t ic   condensa t ion .  

In   ca l cu la t ing   t he   con t r ibu t ion   o f   t he  la teral  d isp lacements   to  

the   geometr ic   s t i f fness   mat r ix   o f   the   e lement ,  one modif icat ion i s  made 

t o   t h e  above procedure:   the   shape  funct ions  used  by Clough  and  Felippa 

f o r   t h e   s u b t r i a n g l e s   a r e   r e p l a c e d  by the  nonconforming  functions 

suggested by Zienkiewicz---Ref.   [12],   equation  (10.26).  A q u i n t i c  

numerical   in tegrat ion  formula  (p .   151  of  Ref. [12]) i s  then   used   to  

compute the   un i t   geometr ic   s t i f fness   mat r ices   for   each   of   the   subt r iangles .  

The membrane and b e n d i n g   c h a r a c t e r i s t i c s   o f   t h e   q u a d r i l a t e r a l   a r e  

condensed  and s t o r e d   s e p a r a t e l y   i n   t h e   f o r m   o f   u n i t   s t i f f n e s s   m a t r i c e s  

and load  vectors  as descr ibed   in   Sec .  B . l .  The procedure  of  condensing 

t h e   u n i t   s t i f f n e s s   m a t r i c e s   b e f o r e   t h e y   a r e  combined in to   t he   e l emen t  

s t i f f n e s s   m a t r i x  i s  va l id   on ly  i f  a l l  t h e   s u b t r i a n g l e s  are coplanar .  

Therefore,  i f  the  four   corner   nodes do n o t  l i e  on t h e  same p lane ,  i . e . ,  

i f  t h e   q u a d r i l a t e r a l  i s  warped, e r r o r s  w i l l  occur   in   the  computat ion  of  

e lement   p roper t ies .  

If a t r i a n g l e ,   r a t h e r   t h a n  a q u a d r i l a t e r a l ,  i s  used   in   the   p rogram,  

"\)a*:- I X 

"- - I 
/ I 

I 

/ i 

1(I)   Mid-side  points  

a s i n g l e  LCCT-9 element will be 

used  for   bending,  and a constant  

s t r a i n   t r i a n g l e   f o r   t h e  membrane 

a c t i o n .  The t r iangular   e lement  

with i t s  local   coordinate   system 

is  shown i n   F i g .  1 . 1 . 2 .  

Figure 1 . 1 . 2  

Triangular  Plate  Element.  
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The  basic  element  loads  consist of lateral  pressure,  thermal  loading, 

and  gravity  loads in the  three  global  coordinate  directions.  The  temper- 

ature is assumed  to  be'  uniform  through  the  thickness of the  plate,  i.e., 

thermal  stresses  caused  by  temperature  gradients in the  direction  normal 

to  the  element  are  neglected. 

Provision  has  been  made  for  temperature-dependent  material  properties. 

The  properties of each  material  used  should  be  listed  for  a  range of 

temperatures  covering  che  entire  temperature  spectrum of the  structure. 

Linear  interpolation  is  used  by  the  computer  to  calculate  the  properties 

o f  each  element  for  the  specified  nodal  temperatures. 

The  output  from  analysis  contains  the  stress  resultants  referred 

to  the  coordinates 2 and 7 .  The  positive  directions of the  stress re- 

sultants  are  shown  in  Fig.  1.1.3.  For  a  quadrilateral,  the  stress re- 

sultants  are  calculated  at  node 5 (Fig. I. 1 .l) by  averaging  the  values 

"7 
t- 

FiEure I. 1.3 

Positive  Stress  Resultants. 
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for   the  four   sub-tr iangles .   In   the  case  of   the   t r iangular   e lement ,  

t h e   s t r e s s   r e s u l t a n t s  are computed a t  node 3 i n  Fig. 1 .1 .2 .  

If the  plate   e lements   are   used  to  model a curved  surface,   the  nodal 

ro t a t ion  about  the normal to   the   sur face  may be suppressed by the  use  of 

boundary  elements  (see Ch. J ) .  

The element  data deck f o r  each  construction code  used must begin 

with : 

VI A Element Control Card (515) 

1 6 11 16 2 1  25 

NLJMblAT NUMTC KODE 

NPAR(1) = Code f o r  element  type (MTYPE). For plate  elements  use 
NPAR(1) = 6. 

NPAR(2) = Number o f  elements  with  the  specified  construction code (NUME). 

N P A R ( 3 )  = h’umber of d i f fe ren t   mater ia l s   used   for   the   spec i f ied   cons t ruc t ion  
code (NUblMAT) . 

NPAR(4) = Maximum number of temperatures  for which the   p roper t ies  of any 
one material   are  given (NUMTC). 

NPAR(5) = Construction code (KODE).  

The remainder  of  element  data i s  l i s t e d   s e p a r a t e l y   f o r  each  construction  code. 
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1 . 2  Construct ion Code No. 1 

Th i s   cons t ruc t ion   code   t r ea t s   i so t rop ic ,  homogeneous p l a t e  elements. 

The des ign   va r i ab le   ( s i ze   o f   t he   e l emen t )  is  t h e   p l a t e   t h i c k n e s s  t. 

The stress ra t io   redes ign   formula  i s  obtained  from  the  modified 

Von b4ises y i e l d   c r i t e r i o n  

(1.2.1) 

where u* and T* are   the  a l lowable  normal   and  shear  stresses r e f e r r e d   t o  

t h e  x  ̂ and 9 ax i s ,   r e spec t ive ly .   D i f f e ren t   va lues   o f  a* may be   used   for  

t e n s i o n  (a*) and compression (a*). t C 

Note t h a t   ( I .   2 . 1 )   r e p r e s e n t s   t h e   o r i g i n a l   , i s o t r o p i c  Von Mises   yield 

c r i t e r i o n  i f  a* = (T* and T* = a*/fi. In   t ha t   ca se ,   t he   des ign  would be 

independent of  t he   ang le  6 i n   F i g s .  I .  1 .2  and I .  1.3;   consequently,  B will 

t C 

on ly   con t ro l   t he   p r in tou t  o f  t h e  stress r e s u l t a n t s .  

The s t r e s s   r a t i o   f o r m u l a   o b t a i n a b l e  from ( I   . 2 .1 )  i s  the   fou r th -o rde r  

equa t ion   i n  t ' / t :  

( t ' / t ) 4  - a ( t ' / t )  + b ( t   ' / t )  - c = 0 ,  
2 -  ( 1 . 2 . 2 )  

where t h e  minus s ign   preceding  b i s  app l i cab le   t o   t he   uppe r   su r f ace  of 

t h e   p l a t e  and t h e   p l u s   s i g n   t o   t h e   l o w e r   s u r f a c e ,  and 

a = (N,,/N*)' + (NA/N*) '. +' (h'AA/Ng)2 - N & n /  (N*) 2 
Y XY X Y  

b = 2 [ (Ng/N*) (Mg/M*) + (NJN*)  (Mn/M*)  + (NAJN:) (MAJM;)] Y Y X Y  ZY 
( 1 . 2 . 3 )  

- [ (Nz/N*) (MF/M*) + (NJN*) (Mc/M*)] 
Y 

C = (Mg/M*)' + ( M A / M * )  + (M2JMG)  - (Mc/M*) (MJM*) . 2 
Y Y 
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In   (1 .2 .3)  we used   t he   no ta t ion  

N* = to* Ng = t T *  

M* = t 0 * / 6  , 2 MC = t ~ * / 6  . 2 

Equation  (1.2.2) i s  solved by t h e  method o f   s u c c e s s i v e   i t e r a t i o n s ,  

t h e   i t e r a t i o n   e q u a t i o n   b e i n g  

(rv+1)4 - (a 2 b / r v )   ( r  V+1) 2 - c = o  , 

i . e . ,  

r w + l  = [ $a:b/rw) 1 + /--(a+b/rV)2 4 -  1 + c ]1/2 9 (1.2.5) 

where rv i s  the   cu r ren t   va lue   o f  t ' / t ,  and rV+l represents   the   improved  

va lue .  The s t a r t i n g   v a l u e   o f  rv i s  taken as one,  and  the number o f  

i t e r a t i o n s  i s  l i m i t e d   t o   t e n .  Note t h a t   f o r   p u r e   b e n d i n g   a c t i o n   o r   p u r e  

membrane s t a t e  o f  stress b = 0 ,  i n  which case ,   ( I .   2 .5 )  becomes an  exact  

expres s ion   fo r  t ' / t .  

The redesign  equat ion i s  a p p l i e d   o n l y   t o   t h e   p o i n t  where t h e  stress 

r e s u l t a n t s  are calculated,   namely  node 5 f o r  a q u a d r i l a t e r a l ,  and  node 3 

f o r  a t r i a n g l e .  No l o c a l   i n s t a b i l i t y  c r i t e r i a  are used   wi th   th i s   con-  

s t ruc t ion   code .  

VI B Ma te r i a l   P rope r t i e s  Data 

A separa te   da ta   deck ,   descr ibed   be low,  i s  r equ i r ed   fo r   each  material 

used   fo r   t h i s   cons t ruc t ion   code .  The decks do not   have   to  be i n   t h e  

sequence of  material numbers. 

Material Controi Card  (215, F1O.O) 

*] 
11 20 
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N = Material  number. 

NTC = Number of   t empera tures   for  which t h e   p r o p e r t i e s   o f   t h i s  material 
a re   g iven .  If blank,  computer sets NTC = 1. 

WT = Weight-density  of  the material. 

Mater ia l   Proper t ies   Cards  (7F10.0) 

One ca rd   fo r   each   t empera tu re   fo r  which t h e   p r o p e r t i e s  of  t h i s  

material are given.  Cards  must  be in   ascending   order   o f   t empera tures .  

b- P1\2AT(7) 

PMAT(l)= Temperature  for  which  the  material ,   properties are given  (T).  

P!.NT(2)= Young's  modulus o f   e l a s t i c i t y  ( E ) .  

PMAT(3)= P o i s s o n ' s   r a t i o  (v). 

PMAT(4)= Coeff ic ient   of   l inear   thermal   expansion ( a ) .  

PMAT(5)= Tens i l e   s t r eng th  ( 0 ; ) .  

PMAT(6)= Compressive  strength (a;). I f  blank,  computer  sets PMAT(6)=PblAT(S). 

PblAT(7)= Shear   s t rength  (T*). If blank,  computer  sets PMAT(7)=0.577*PMAT(S). 

V I  C Element Load Mult ipl iers   (4F10.0)  

Five  cards  shown below: 

1 11 2 1  31 40 

Card 1: la teral  pressure .  

Card  2:  thermal  loading. 

Card 3 :   x -gravi ty .  

Card 4:   y-gravi ty .  

Card 5 :  z -gravi ty .  

I 
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EIWL = Fractions o f .  basic  element  loads  ( lateral   pressure,   thermal 
loading and gravi ty   loads   in   the   th ree   g loba l   coord ina te  
d i rec t ions)  which are t o  be included i n  element loads A,B,C 
and D. 

Element Load Multipliers  simply  define  the  element  loads A,B,C and D .  

Various  multiples of these  element  loads  can  be added t o  each  s t ructural  

load  condition by the  use of S t ruc tura l  Load Plult ipliers  (see  Sec.  D.l). 

I V  D Element  Data (815, 3.F10.0) 

One card f o r  each  element;  cards must be  arranged  in an ascending 

order  o f  element  numbers. 

1 6 11 16 2 1  26 31 36 41. 51  61  71 80 

I [ J  [ K  I L  IblAT REFT I D V  PRESS INC 

I-=-- IE (4) -+ 
IEL 

I E  

I bNT 

INC 

I DV 

PRESS 

RE FT 

FRC 

BETA 

= Element  number. 

= Node numbers I,J,K and L of  the  four  corner nodes (see  Fig.  1.1.1). 
For a triangu!  ar  element us,e L = 0.  

= Material number of the  element. 

= Node number increment  in  automatic  generation of element  data 
(see  note  below). I f  b l a n k ,  computer s e t s  INC = 1. 

= Design var iab le  number of element. 

= Lateral   pressure  ( in   the  posi t ive  ; -direct ion)   act ing on the  
e 1 ement . 

= Reference  temperature  (temperature  of  the  stress-free state) 
of the  element. 

= The design  var iable   f ract ion lli in   (B . l . 2 ) :  A i  = q - D  m. Note 
t h a t   t h e   s i z e  of the  element A i  i s  the  thickness   of   the   plate .  
If   blank, computer s e t s  FRC = 1 . 0 .  

= The angle 6 (in  degrees)  that   defines  the x^ and f axes as 
shown i n  F i g s .  I .  1.1 and I .1.2 . Note t h a t   t h e   s t r e s s   r e s u l t a n t s  
minted   ou t   a re   re fe r red  t o  the  2 and 0 axes. 
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Automatic  element  data generation---if  there  exists a  series of 

elements  IEL = m, m+l,  m+2, ..., which  satisfy the following  conditions: 
(a) the node numbers  form the  sequences 

I = i, i+INC, i+2*INC, ..., 
J = j,  j+INC, j+2*INC,. . ., 
K = k, k+INC, k+2*INC, ..., 
L = 2 ,  R+INC, 2+2*INC,. . . , 

(b) the remainder  of ‘the data is  identical for  all  elements of the 
series, 

then  only  the  last  card of the  series  will be required.  The  element  data 

for the  other  elements of  the  series  will  be  generated  automatically. 

” 
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J . BOUNDARY ELEMENTS 

A boundary   e l emen t   i s ' e s sen t i a l ly  a l i n e  e lement   wi th   spec i f ied  

ex tens iona l   and /o r   ro t a t iona l   sp r ing   cons t an t .  The element can be 

used   for   the   fo l lowing   purposes :  

(a)   model l ing  of  e las t ic  suppor t s ,  

(b)   enforcement   of   specif ied  nodal   displacements  o r  r o t a t i o n s   i n  
a g iven   d i r ec t ion ,  

(c)  computation of suppor t   r eac t ions .  

The d i r ec t ion   o f   t he   boundary   e l emen t   can   be   spec i f i ed   i n  two  ways, 

as shown in   F ig .  J. 1. 

Figure J . l  

Two Opt ions   for   Spec i fy ing   Di rec t ion  n of  
a Boundary Element. 

In method ( a )   t h e   d i r e c t i o n  i s  determined by t h e   s t r u c t u r a l   n o d e  N and 

a second  node I. The l a t t e r  may a l so   be  a s t r u c t u r a l   n o d e ,  o r  a node 

s p e c i a l l y   c r e a t e d   f o r   t h e   p u r p o s e .  In  t h e  l a t t e r  case, the   degrees  of 
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freedom of I should  be  suppressed on t h e  nodeu ca rd .   In  method (b) 

t h e   d i r e c t i o n  of the  e lement  i s  taken as p e r p e n d i c u l a r   t o   t h e   l i n e s  I-J 

and K-L. Again ,   the   po in ts  I,J,K and L may b e   s t r u c t u r a l   n o d e s ,   o r  

s p e c i a l   p o i n t s   l i s t e d  on t h e  node cards   (with  suppressed  degrees   of  

freedom).  This  option i s  p a r t i c u l a r l y   u s e f u l  when boundary  elements 

are used t o   s u p p r e s s   t h e  normal r o t a t i o n s   f o r   t h i n   s h e l l s .  

The r e s u l t s  of t he   ana ly . s i s   cons i s t  of t h e   a x i a l   f o r c e   a n d / o r  

t o rque  i n  the  boundary element. If  the  boundary element is  an   ex tens iona l  

s p r i n g ,   t h e   a x i a l  force i s  compuLed from the  formula 

P = k 6  , (J. :-) 

where k i s  the   sp r ing   cons t an t   and  6 t h e  computed displacement  of node N 

( see   F ig .   J . 2 ) .  

S i m i l a r l y ,   t h e   t o r q u e   i n  a 

& .(' Boun: Be 1 emcn t r o t a t i o n a l   s p r i n g   o b t a i n e d  

from 

T = k e  , (J. 2) 

with T be ing   t he   t o rque  and 

8 t h e  computed r o t a t i o n .  
S t r u c t u r e  

8 t h e  computed r o t a t i o n .  

Figure .J. 2 

Positive Displacements  and 
Forces  Acting on t h e   S t r u c t u r e  

P o s i t i v e   d i r e c t i o n s   o f   t h e   f o r c e s  and  displaccrnents are de f ined   i n   F ig .  5 . 2 .  
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If a nonzero  displacement 6* is  prescr ibed   for   node  N ,  t he   fo l lowing  

f o r c e  is  a p p l i e d   t o   t h e  node p r i o r   t o   a n a l y s i s :  

P* = k6* . (J. 3) 

This   appl ied   force  w i l l  r e s u l t   i n   t h e   s p e c i f i e d   d i s p l a c e m e n t   o n l y  i f  

the   sp r ing   cons t an t  k of  the  boundary  element i s  made  much l a r g e r   t h a n  

t h e   c o r r e s p o n d i n g   s t i f f n e s s   o f   t h e   s t r u c t u r e .  A s p e c i f i e d   r o t a t i o n  8* 

is  handled   in   the   ana logous   fash ion .  

" 

A r egu la r   e l a s t i c   suppor t   (w i thou t  a prescr ibed  displacement)  i s  

ob ta ined   by   s e t t i ng  6* = 0 and/or 0* = 0.  I f ,  i n   a d d i t i o n ,  k i s  made 

suf f ic ien t ly   l a rge ,   the   boundary   e lement  will approximate a r i g i d  

suppor t .  The l a t t e r  opt ion  provides  a means of   enforcing "skewed" 

boundary   condi t ions   due   to ,   fo r   example ,   inc l ined   ro l le r   suppor ts .  

Caut ion  must   be  exercised  in   the  use  of   boundary  e lemen' ts .  Round- 

o f f   e r r o r s   i n   t h e   i n p u t   d a t a  and  computation  of  element  properties  have 

t h e   e f f e c t   o f   i n t r o d u c i n g   s p r i n g s   i n   d i r e c t i o n s   o t h e r   t h a n   t h e   d e s i r e d  

o r i e n t a t i o n .  The spr ing  constants   of   these  undesired  "elementst1 are 

p ropor t iona l   t o   t he   roundof f   e r ro r s .   A l though  some of the  computat ional  

e r rors   a re   min imized  by the   u se   o f   doub le   p rec i s ion   a r i t hme t i c ,  it 

i s  s t i l l  impor tan t   no t   to  make t h e   s p r i n g   c o n s t a n t s  of the  boundary 

e l emen t s   t oo   l a rge   and   t o   spec i fy   t he   d i r ec t ions   o f   t he   e l emen t s   w i th  

g r e a t   p r e c i s i o n .  

VI A Element  Control  Card  (215) 



NPAR(1) = Code  for  element  type ("TYPE). For  boundary  elements use 
NPAR(1) = 7. 

NPAR(2) = Number of boundary  elements (NUME). 

VI B Element  Load  Multipliers (4F10.0) 

1 11 21 31 40 

I E L l B l C l D  I 
k- EMUL (4) -1 

EMUL = Fractions of specified  nodal  displacements  and  rotations  which 
are t o  be  included in element  load  cases A , B , C  and D. 

Element  Load  Ffultipliers  define  the  element  loads A , B , C  and D. Various 

multiples  of  these  element  loads  can  be  added  to  each  structural  load 

condition  by  the  use of Structural  Load  Multipliers  as  explained in 

Sec.  D.l. For  boundary  elements,  the  load  multipliers  are  useful  if 

some  structural  load  cases  include  specified  nodal  displacements,  while 

others  do  not. 

VI C Element  Data  (915, SX, 3F10.0) 

One  card for  each  boundary  element;  cards  must  be  in  ascending  order 

of element  numbers. 

1 6 11  16  21 26 31 36 41 46 51 61 71 80 

IEL I N 1 I 1 J I K I L l K D  I K R  ~INC~blank I SD I SR ITRACE + IEC5) 4 
Element  number. 

Node number of node N (structural  node  to  which  the  boundary 
element is attached). 

Node  numbers,  I,J,K,L  that  define  the  direction of the  element. 
If node I only  is  used  as shown in  Fig.  J. 1 (a), set J = K = L = 0 .  
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KD = Code for   extensional   boundary  e lement .  
K D  = 0 :  ex tens iona l  s p r i n g  i s  not   used.  
KD = 1: ex tens iona l  s p r i n g  i s  used.  

KR = Code for   . ro ta t iona l   boundary   e lement .  
KR = 0 :  r o t a t i o n a l  s p r i n g  i s  not   used.  
KR = 1: r o t a t i o n a l  s p r i n g  i s  used. 

INC = Node increment   used   in   au tomat ic   genera t ion  o f  e lement   da ta  
(see  below). 

SD = Specif ied  displacement  of node N .  

SR = S p e c i f i e d   r o t a t i o n   o f  node N ( r a d i a n s ) .  

TRACE = S p r i n g   s t i f f n e s s   f o r   e x t e n s i o n a l   a n d / o r   r o t a t i o n   s p r i n g .  If 
blank,   computer   sets  TRACE = 10.0**10. 

Automat ic   e lement   genera t ion- - - i f   there   ex is t s  a s e r i e s  o f  elements  which 

s a t i s f y   t h e   f o l l o w i n g   c o n d i t i o n s :  

(a>  the  element numbers  form the  sequence 
?.IEIIlB = m ,  m + l ,  m+2,. . .; 

(bj   the   node  nunbers   of   successive  e lements   are  
N = n ,  n+INC,  n+2*INC, ..., 
I = i, i+INC,  i+2*INC, . . . ,  
J = j ,  j+INC,  j+2*INCJ. . .  , o r , J = K = L = O  
I( = k, k+Il\’C,  k+2*INCJ.. . , f o r  a l l  elements i f  node I only 
L = 2 ,  R+INC, R+2*INC, ... , i s  used f o r  d i r e c t i o n ;  1 

(cj   the   remainder  o f  t h e   d a t a  i s  i d e n t i c a l   f o r   a l l   e l e m e n t s  of t h e  
series ; 

then   on ly   the  last c a r d   o f   t h e   s e r i e s  will be   r equ i r ed .  The element 
” 

d a t a   f o r   o t h e r   e l e m e n t s   o f   t h e   s e r i e s  will be   genera ted   au tomat ica l ly .  
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